Properties

Label 8-768e4-1.1-c1e4-0-11
Degree $8$
Conductor $347892350976$
Sign $1$
Analytic cond. $1414.33$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s + 2·9-s − 8·15-s − 12·19-s − 8·23-s + 6·27-s + 28·29-s − 20·43-s − 8·45-s + 32·47-s + 16·49-s − 4·53-s − 24·57-s − 12·67-s − 16·69-s − 8·71-s + 8·73-s + 11·81-s + 56·87-s + 48·95-s − 16·97-s − 20·101-s + 32·115-s + 16·121-s + 20·125-s + 127-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s + 2/3·9-s − 2.06·15-s − 2.75·19-s − 1.66·23-s + 1.15·27-s + 5.19·29-s − 3.04·43-s − 1.19·45-s + 4.66·47-s + 16/7·49-s − 0.549·53-s − 3.17·57-s − 1.46·67-s − 1.92·69-s − 0.949·71-s + 0.936·73-s + 11/9·81-s + 6.00·87-s + 4.92·95-s − 1.62·97-s − 1.99·101-s + 2.98·115-s + 1.45·121-s + 1.78·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1414.33\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.488575444\)
\(L(\frac12)\) \(\approx\) \(2.488575444\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good5$D_{4}$ \( ( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 16 T^{2} + 142 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
11$C_4\times C_2$ \( 1 - 16 T^{2} + 126 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 20 T^{2} + 358 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 6 T + 42 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 14 T + 102 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 96 T^{2} + 4046 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 76 T^{2} + 2902 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 116 T^{2} + 6406 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 10 T + 106 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
53$D_{4}$ \( ( 1 + 2 T + 102 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 224 T^{2} + 19486 T^{4} - 224 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 172 T^{2} + 13558 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 6 T + 98 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 + 4 T - 34 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
79$D_4\times C_2$ \( 1 - 128 T^{2} + 7758 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 272 T^{2} + 31774 T^{4} - 272 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 8 T + 190 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58466529537121823514154997726, −7.18335137708237561618742043769, −7.08066195669088376767250866621, −6.59335924568600896717028934211, −6.53121168805146507199738683746, −6.47855245082020739774002256760, −6.25763693422057212140713946382, −5.63239728104520187500111972275, −5.55933353659882848251995154607, −5.44525734300318499721014167211, −4.66566724767796312911858904128, −4.59561363840731481462181176044, −4.42968988332501770349683343135, −4.14079054318181423031266963422, −4.12669712169994804630329275532, −3.85816401265561174507361954474, −3.49480344869575337104572687181, −2.94824253369975586331559108812, −2.89963240507423642662031712386, −2.60534742539296043482904941175, −2.39321899657492416575731562878, −1.77009556746866831490971604721, −1.68962093547285754843264970708, −0.68764621073412762469194215300, −0.55743542511046815730854656783, 0.55743542511046815730854656783, 0.68764621073412762469194215300, 1.68962093547285754843264970708, 1.77009556746866831490971604721, 2.39321899657492416575731562878, 2.60534742539296043482904941175, 2.89963240507423642662031712386, 2.94824253369975586331559108812, 3.49480344869575337104572687181, 3.85816401265561174507361954474, 4.12669712169994804630329275532, 4.14079054318181423031266963422, 4.42968988332501770349683343135, 4.59561363840731481462181176044, 4.66566724767796312911858904128, 5.44525734300318499721014167211, 5.55933353659882848251995154607, 5.63239728104520187500111972275, 6.25763693422057212140713946382, 6.47855245082020739774002256760, 6.53121168805146507199738683746, 6.59335924568600896717028934211, 7.08066195669088376767250866621, 7.18335137708237561618742043769, 7.58466529537121823514154997726

Graph of the $Z$-function along the critical line