Properties

Label 8-75e4-1.1-c7e4-0-5
Degree $8$
Conductor $31640625$
Sign $1$
Analytic cond. $301304.$
Root an. cond. $4.84033$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·2-s − 108·3-s − 49·4-s + 972·6-s − 1.18e3·7-s + 387·8-s + 7.29e3·9-s + 5.37e3·11-s + 5.29e3·12-s − 8.42e3·13-s + 1.06e4·14-s + 3.48e3·16-s − 4.89e3·17-s − 6.56e4·18-s + 1.52e4·19-s + 1.28e5·21-s − 4.83e4·22-s − 1.10e5·23-s − 4.17e4·24-s + 7.58e4·26-s − 3.93e5·27-s + 5.82e4·28-s − 1.20e5·29-s + 1.16e5·31-s − 8.46e4·32-s − 5.80e5·33-s + 4.40e4·34-s + ⋯
L(s)  = 1  − 0.795·2-s − 2.30·3-s − 0.382·4-s + 1.83·6-s − 1.30·7-s + 0.267·8-s + 10/3·9-s + 1.21·11-s + 0.884·12-s − 1.06·13-s + 1.04·14-s + 0.212·16-s − 0.241·17-s − 2.65·18-s + 0.509·19-s + 3.02·21-s − 0.968·22-s − 1.88·23-s − 0.617·24-s + 0.845·26-s − 3.84·27-s + 0.501·28-s − 0.913·29-s + 0.704·31-s − 0.456·32-s − 2.81·33-s + 0.192·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(31640625\)    =    \(3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(301304.\)
Root analytic conductor: \(4.84033\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 31640625,\ (\ :7/2, 7/2, 7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{3} T )^{4} \)
5 \( 1 \)
good2$C_2 \wr S_4$ \( 1 + 9 T + 65 p T^{2} + 153 p^{3} T^{3} + 651 p^{4} T^{4} + 153 p^{10} T^{5} + 65 p^{15} T^{6} + 9 p^{21} T^{7} + p^{28} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 1188 T + 219424 p T^{2} + 89985492 T^{3} + 253878640350 T^{4} + 89985492 p^{7} T^{5} + 219424 p^{15} T^{6} + 1188 p^{21} T^{7} + p^{28} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 5376 T + 68059592 T^{2} - 265739821920 T^{3} + 1856153151437406 T^{4} - 265739821920 p^{7} T^{5} + 68059592 p^{14} T^{6} - 5376 p^{21} T^{7} + p^{28} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 648 p T + 127784896 T^{2} + 910091284632 T^{3} + 8912329711731150 T^{4} + 910091284632 p^{7} T^{5} + 127784896 p^{14} T^{6} + 648 p^{22} T^{7} + p^{28} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 288 p T + 990101248 T^{2} + 13265399718720 T^{3} + 453457643591452926 T^{4} + 13265399718720 p^{7} T^{5} + 990101248 p^{14} T^{6} + 288 p^{22} T^{7} + p^{28} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 15232 T + 392774572 T^{2} - 22311843627904 T^{3} + 1443987068893239574 T^{4} - 22311843627904 p^{7} T^{5} + 392774572 p^{14} T^{6} - 15232 p^{21} T^{7} + p^{28} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 110016 T + 14943940732 T^{2} + 1034411925986496 T^{3} + 79201784745547797990 T^{4} + 1034411925986496 p^{7} T^{5} + 14943940732 p^{14} T^{6} + 110016 p^{21} T^{7} + p^{28} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 120036 T + 67036689080 T^{2} + 5675627737126332 T^{3} + \)\(17\!\cdots\!78\)\( T^{4} + 5675627737126332 p^{7} T^{5} + 67036689080 p^{14} T^{6} + 120036 p^{21} T^{7} + p^{28} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 116864 T + 81093883468 T^{2} - 6882918957523712 T^{3} + \)\(30\!\cdots\!54\)\( T^{4} - 6882918957523712 p^{7} T^{5} + 81093883468 p^{14} T^{6} - 116864 p^{21} T^{7} + p^{28} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 663768 T + 359089738528 T^{2} + 136020997240132392 T^{3} + \)\(48\!\cdots\!70\)\( T^{4} + 136020997240132392 p^{7} T^{5} + 359089738528 p^{14} T^{6} + 663768 p^{21} T^{7} + p^{28} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 253824 T + 334342452188 T^{2} - 27270984718092672 T^{3} + \)\(66\!\cdots\!34\)\( T^{4} - 27270984718092672 p^{7} T^{5} + 334342452188 p^{14} T^{6} - 253824 p^{21} T^{7} + p^{28} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 1092960 T + 1046348379820 T^{2} + 610415406190516320 T^{3} + \)\(36\!\cdots\!98\)\( T^{4} + 610415406190516320 p^{7} T^{5} + 1046348379820 p^{14} T^{6} + 1092960 p^{21} T^{7} + p^{28} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 132840 T + 921587080780 T^{2} - 106414099405575480 T^{3} + \)\(48\!\cdots\!38\)\( T^{4} - 106414099405575480 p^{7} T^{5} + 921587080780 p^{14} T^{6} + 132840 p^{21} T^{7} + p^{28} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 1994616 T + 4981442415712 T^{2} + 6519241402601783976 T^{3} + \)\(90\!\cdots\!50\)\( T^{4} + 6519241402601783976 p^{7} T^{5} + 4981442415712 p^{14} T^{6} + 1994616 p^{21} T^{7} + p^{28} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 545712 T + 6864766660712 T^{2} + 4026585148405309584 T^{3} + \)\(21\!\cdots\!34\)\( T^{4} + 4026585148405309584 p^{7} T^{5} + 6864766660712 p^{14} T^{6} + 545712 p^{21} T^{7} + p^{28} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 3216760 T + 11354186987116 T^{2} + 29259400663039022440 T^{3} + \)\(51\!\cdots\!46\)\( T^{4} + 29259400663039022440 p^{7} T^{5} + 11354186987116 p^{14} T^{6} + 3216760 p^{21} T^{7} + p^{28} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 2013336 T + 14331869916028 T^{2} + 24681696313094184600 T^{3} + \)\(10\!\cdots\!66\)\( T^{4} + 24681696313094184600 p^{7} T^{5} + 14331869916028 p^{14} T^{6} + 2013336 p^{21} T^{7} + p^{28} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 690912 T + 24146587182668 T^{2} + 3374261752345932384 T^{3} + \)\(28\!\cdots\!70\)\( T^{4} + 3374261752345932384 p^{7} T^{5} + 24146587182668 p^{14} T^{6} + 690912 p^{21} T^{7} + p^{28} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 5498064 T + 40857210451732 T^{2} - \)\(13\!\cdots\!64\)\( T^{3} + \)\(61\!\cdots\!90\)\( T^{4} - \)\(13\!\cdots\!64\)\( p^{7} T^{5} + 40857210451732 p^{14} T^{6} - 5498064 p^{21} T^{7} + p^{28} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 7190080 T + 89811290861836 T^{2} - \)\(40\!\cdots\!60\)\( T^{3} + \)\(26\!\cdots\!86\)\( T^{4} - \)\(40\!\cdots\!60\)\( p^{7} T^{5} + 89811290861836 p^{14} T^{6} - 7190080 p^{21} T^{7} + p^{28} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 13158432 T + 171401132585740 T^{2} - \)\(11\!\cdots\!08\)\( T^{3} + \)\(79\!\cdots\!46\)\( T^{4} - \)\(11\!\cdots\!08\)\( p^{7} T^{5} + 171401132585740 p^{14} T^{6} - 13158432 p^{21} T^{7} + p^{28} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 22889448 T + 297109023037052 T^{2} + \)\(26\!\cdots\!16\)\( T^{3} + \)\(19\!\cdots\!34\)\( T^{4} + \)\(26\!\cdots\!16\)\( p^{7} T^{5} + 297109023037052 p^{14} T^{6} + 22889448 p^{21} T^{7} + p^{28} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 17873136 T + 441440121485188 T^{2} + \)\(46\!\cdots\!20\)\( T^{3} + \)\(58\!\cdots\!86\)\( T^{4} + \)\(46\!\cdots\!20\)\( p^{7} T^{5} + 441440121485188 p^{14} T^{6} + 17873136 p^{21} T^{7} + p^{28} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.832985229541882472938971123376, −9.528197343823021273489255626846, −9.413929846898829048649762390226, −9.271961104241637535545239229785, −8.960080937903625112917526336983, −8.073919892366266471756352924555, −8.040168997743132885524454401343, −7.948119890839429919196453761255, −7.16136652007724754923139854988, −6.88739988712124694910513494567, −6.75004095080852477518440929753, −6.33170976920933205225688367649, −6.25633236878103020384475405972, −5.83141960118659190009933936685, −5.24755808712404525599131706446, −5.14373125595596297222707173275, −4.91164005070123507923337072404, −4.21393594231427741774672440774, −3.88383233278106616369521011106, −3.74640153879053663082657060348, −3.08140588177030148191920135805, −2.54898283143344110459210826239, −1.73904496938761779067274273063, −1.35728912720651898692156213010, −1.23475592003302044560197847390, 0, 0, 0, 0, 1.23475592003302044560197847390, 1.35728912720651898692156213010, 1.73904496938761779067274273063, 2.54898283143344110459210826239, 3.08140588177030148191920135805, 3.74640153879053663082657060348, 3.88383233278106616369521011106, 4.21393594231427741774672440774, 4.91164005070123507923337072404, 5.14373125595596297222707173275, 5.24755808712404525599131706446, 5.83141960118659190009933936685, 6.25633236878103020384475405972, 6.33170976920933205225688367649, 6.75004095080852477518440929753, 6.88739988712124694910513494567, 7.16136652007724754923139854988, 7.948119890839429919196453761255, 8.040168997743132885524454401343, 8.073919892366266471756352924555, 8.960080937903625112917526336983, 9.271961104241637535545239229785, 9.413929846898829048649762390226, 9.528197343823021273489255626846, 9.832985229541882472938971123376

Graph of the $Z$-function along the critical line