L(s) = 1 | − 2·5-s − 4·13-s − 14·17-s + 3·25-s − 8·29-s + 2·37-s + 12·41-s + 49-s − 20·53-s − 12·61-s + 8·65-s − 24·73-s + 28·85-s + 24·89-s − 16·97-s + 4·101-s − 30·109-s − 40·113-s − 16·121-s − 14·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.10·13-s − 3.39·17-s + 3/5·25-s − 1.48·29-s + 0.328·37-s + 1.87·41-s + 1/7·49-s − 2.74·53-s − 1.53·61-s + 0.992·65-s − 2.80·73-s + 3.03·85-s + 2.54·89-s − 1.62·97-s + 0.398·101-s − 2.87·109-s − 3.76·113-s − 1.45·121-s − 1.25·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
Λ(s)=(=((224⋅38⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅38⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38⋅134
|
Sign: |
1
|
Analytic conductor: |
1.27812×107 |
Root analytic conductor: |
7.73252 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 224⋅38⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+T)4 |
good | 5 | D4 | (1+T+pT3+p2T4)2 |
| 7 | C22≀C2 | 1−T2+88T4−p2T6+p4T8 |
| 11 | C22≀C2 | 1+16T2+142T4+16p2T6+p4T8 |
| 17 | D4 | (1+7T+36T2+7pT3+p2T4)2 |
| 19 | C22≀C2 | 1+48T2+1134T4+48p2T6+p4T8 |
| 23 | C2 | (1+pT2)4 |
| 29 | C2 | (1+2T+pT2)4 |
| 31 | C22≀C2 | 1+20T2+1366T4+20p2T6+p4T8 |
| 37 | D4 | (1−T+64T2−pT3+p2T4)2 |
| 41 | D4 | (1−6T+50T2−6pT3+p2T4)2 |
| 43 | C22≀C2 | 1+71T2+4456T4+71p2T6+p4T8 |
| 47 | C22≀C2 | 1+159T2+10728T4+159p2T6+p4T8 |
| 53 | D4 | (1+10T+90T2+10pT3+p2T4)2 |
| 59 | C22≀C2 | 1+48T2−498T4+48p2T6+p4T8 |
| 61 | D4 | (1+6T+90T2+6pT3+p2T4)2 |
| 67 | C22≀C2 | 1−16T2+8878T4−16p2T6+p4T8 |
| 71 | C22≀C2 | 1+103T2+12232T4+103p2T6+p4T8 |
| 73 | C2 | (1+6T+pT2)4 |
| 79 | C22≀C2 | 1+92T2+4102T4+92p2T6+p4T8 |
| 83 | C22≀C2 | 1+276T2+32166T4+276p2T6+p4T8 |
| 89 | C2 | (1−6T+pT2)4 |
| 97 | D4 | (1+8T+46T2+8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.12029391731427315789513145521, −5.62180634999003842183532174611, −5.46833489669855354840731042818, −5.32362483713830418527763329447, −5.24047437668904746894271690896, −4.82108639931415739717508289450, −4.76524156985114923069895045056, −4.52179966955378123593433680420, −4.41581608334191897435239196048, −4.22847109885331744619884987749, −4.17230983459498159093735245994, −3.92214676061834151179740557016, −3.78185648876743735765045551287, −3.22923874769557115535923425146, −3.22828908652212673182644652733, −3.19257279859633192610989461106, −2.71226117087426344504330374653, −2.57667567965592075528854474191, −2.26389928203892770152407244227, −2.24788638689645544235796437667, −2.14373983451169288557061606311, −1.55717328523887547018131238917, −1.45264575210826105889514487468, −1.18695215174687380244086291652, −0.903903083101652986774411356564, 0, 0, 0, 0,
0.903903083101652986774411356564, 1.18695215174687380244086291652, 1.45264575210826105889514487468, 1.55717328523887547018131238917, 2.14373983451169288557061606311, 2.24788638689645544235796437667, 2.26389928203892770152407244227, 2.57667567965592075528854474191, 2.71226117087426344504330374653, 3.19257279859633192610989461106, 3.22828908652212673182644652733, 3.22923874769557115535923425146, 3.78185648876743735765045551287, 3.92214676061834151179740557016, 4.17230983459498159093735245994, 4.22847109885331744619884987749, 4.41581608334191897435239196048, 4.52179966955378123593433680420, 4.76524156985114923069895045056, 4.82108639931415739717508289450, 5.24047437668904746894271690896, 5.32362483713830418527763329447, 5.46833489669855354840731042818, 5.62180634999003842183532174611, 6.12029391731427315789513145521