Properties

Label 8-72e4-1.1-c9e4-0-0
Degree $8$
Conductor $26873856$
Sign $1$
Analytic cond. $1.89094\times 10^{6}$
Root an. cond. $6.08954$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 190·3-s + 512·4-s + 1.96e4·9-s + 1.98e5·11-s − 9.72e4·12-s − 1.98e6·19-s + 3.90e6·25-s − 4.36e6·27-s − 3.76e7·33-s + 1.00e7·36-s − 1.02e8·41-s − 4.47e7·43-s + 1.01e8·44-s − 8.07e7·49-s + 3.76e8·57-s − 2.52e8·59-s − 1.34e8·64-s + 6.28e7·67-s − 8.44e8·73-s − 7.42e8·75-s − 1.01e9·76-s + 8.28e8·81-s + 1.73e9·97-s + 3.89e9·99-s + 2.00e9·100-s − 2.23e9·108-s + 1.94e10·121-s + ⋯
L(s)  = 1  − 1.35·3-s + 4-s + 9-s + 4.08·11-s − 1.35·12-s − 3.48·19-s + 2·25-s − 1.57·27-s − 5.52·33-s + 36-s − 5.68·41-s − 1.99·43-s + 4.08·44-s − 2·49-s + 4.72·57-s − 2.71·59-s − 64-s + 0.380·67-s − 3.48·73-s − 2.70·75-s − 3.48·76-s + 2.13·81-s + 1.99·97-s + 4.08·99-s + 2·100-s − 1.57·108-s + 8.24·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.89094\times 10^{6}\)
Root analytic conductor: \(6.08954\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 26873856,\ (\ :9/2, 9/2, 9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.348706488\)
\(L(\frac12)\) \(\approx\) \(1.348706488\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p^{9} T^{2} + p^{18} T^{4} \)
3$C_2^2$ \( 1 + 190 T + 16417 T^{2} + 190 p^{9} T^{3} + p^{18} T^{4} \)
good5$C_2^2$ \( ( 1 - p^{9} T^{2} + p^{18} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + p^{9} T^{2} + p^{18} T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - 66042 T + p^{9} T^{2} )^{2}( 1 - 66042 T + 2003598073 T^{2} - 66042 p^{9} T^{3} + p^{18} T^{4} ) \)
13$C_2^2$ \( ( 1 + p^{9} T^{2} + p^{18} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 597510 T + 238430323603 T^{2} - 597510 p^{9} T^{3} + p^{18} T^{4} )( 1 + 597510 T + 238430323603 T^{2} + 597510 p^{9} T^{3} + p^{18} T^{4} ) \)
19$C_2^2$ \( ( 1 + 990146 T + 657701403537 T^{2} + 990146 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - p^{9} T^{2} + p^{18} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - p^{9} T^{2} + p^{18} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + p^{9} T^{2} + p^{18} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p^{9} T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 34306362 T + p^{9} T^{2} )^{2}( 1 + 34306362 T + 849544539281083 T^{2} + 34306362 p^{9} T^{3} + p^{18} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 + 44782090 T + p^{9} T^{2} )^{2}( 1 - 44782090 T + 1502842972831257 T^{2} - 44782090 p^{9} T^{3} + p^{18} T^{4} ) \)
47$C_2^2$ \( ( 1 - p^{9} T^{2} + p^{18} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{9} T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + 84243834 T + p^{9} T^{2} )^{2}( 1 + 84243834 T - 1565972251635383 T^{2} + 84243834 p^{9} T^{3} + p^{18} T^{4} ) \)
61$C_2^2$ \( ( 1 + p^{9} T^{2} + p^{18} T^{4} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 62817230 T + p^{9} T^{2} )^{2}( 1 + 62817230 T - 23260530011422047 T^{2} + 62817230 p^{9} T^{3} + p^{18} T^{4} ) \)
71$C_2$ \( ( 1 + p^{9} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 422324930 T + 119486759791236987 T^{2} + 422324930 p^{9} T^{3} + p^{18} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + p^{9} T^{2} + p^{18} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 144637650 T - 166020205470017903 T^{2} - 144637650 p^{9} T^{3} + p^{18} T^{4} )( 1 + 144637650 T - 166020205470017903 T^{2} + 144637650 p^{9} T^{3} + p^{18} T^{4} ) \)
89$C_2$ \( ( 1 - 1089849006 T + p^{9} T^{2} )^{2}( 1 + 1089849006 T + p^{9} T^{2} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 1738254710 T + p^{9} T^{2} )^{2}( 1 + 1738254710 T + 2261298378182618883 T^{2} + 1738254710 p^{9} T^{3} + p^{18} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.852244164101031622849043913045, −8.689873913570018757066015990875, −8.520445178413951783484848374138, −8.033472009608271608050724404928, −7.46479745826285174952485887877, −6.91575656025677203889221997368, −6.78186356282441126473118584531, −6.69716104826998704160404927411, −6.32150793311194887857014957010, −6.28188867896929149739401661819, −6.14060409783990931991132541731, −5.32132995775059223760909785298, −4.86479121218185684519544572453, −4.70306299316123994727477925501, −4.37379279866844624093927043777, −3.90951605935995986361925723160, −3.61929201003955848077558904551, −3.21656955008122095712010123260, −2.85830396556037897679358476739, −1.72555992839170177076604042006, −1.71393997184272366286539458461, −1.70662027837813543095987527626, −1.41116600393785443991400843878, −0.48439531735700533473667157728, −0.22080519075705065120747666065, 0.22080519075705065120747666065, 0.48439531735700533473667157728, 1.41116600393785443991400843878, 1.70662027837813543095987527626, 1.71393997184272366286539458461, 1.72555992839170177076604042006, 2.85830396556037897679358476739, 3.21656955008122095712010123260, 3.61929201003955848077558904551, 3.90951605935995986361925723160, 4.37379279866844624093927043777, 4.70306299316123994727477925501, 4.86479121218185684519544572453, 5.32132995775059223760909785298, 6.14060409783990931991132541731, 6.28188867896929149739401661819, 6.32150793311194887857014957010, 6.69716104826998704160404927411, 6.78186356282441126473118584531, 6.91575656025677203889221997368, 7.46479745826285174952485887877, 8.033472009608271608050724404928, 8.520445178413951783484848374138, 8.689873913570018757066015990875, 8.852244164101031622849043913045

Graph of the $Z$-function along the critical line