Properties

Label 8-72e4-1.1-c7e4-0-0
Degree $8$
Conductor $26873856$
Sign $1$
Analytic cond. $255912.$
Root an. cond. $4.74254$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 86·3-s + 128·4-s + 2.18e3·9-s + 2.64e4·11-s + 1.10e4·12-s + 1.19e5·19-s + 1.56e5·25-s − 7.18e4·27-s + 2.27e6·33-s + 2.79e5·36-s + 7.10e5·41-s − 2.20e5·43-s + 3.38e6·44-s − 1.64e6·49-s + 1.02e7·57-s − 3.09e6·59-s − 2.09e6·64-s − 3.85e6·67-s + 9.73e6·73-s + 1.34e7·75-s + 1.52e7·76-s − 6.17e6·81-s − 9.93e6·97-s + 5.78e7·99-s + 2.00e7·100-s − 9.19e6·108-s + 3.68e8·121-s + ⋯
L(s)  = 1  + 1.83·3-s + 4-s + 9-s + 5.98·11-s + 1.83·12-s + 3.99·19-s + 2·25-s − 0.702·27-s + 11.0·33-s + 36-s + 1.61·41-s − 0.422·43-s + 5.98·44-s − 2·49-s + 7.34·57-s − 1.96·59-s − 64-s − 1.56·67-s + 2.92·73-s + 3.67·75-s + 3.99·76-s − 1.29·81-s − 1.10·97-s + 5.98·99-s + 2·100-s − 0.702·108-s + 18.9·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(255912.\)
Root analytic conductor: \(4.74254\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 26873856,\ (\ :7/2, 7/2, 7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(39.89126823\)
\(L(\frac12)\) \(\approx\) \(39.89126823\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p^{7} T^{2} + p^{14} T^{4} \)
3$C_2^2$ \( 1 - 86 T + 5209 T^{2} - 86 p^{7} T^{3} + p^{14} T^{4} \)
good5$C_2^2$ \( ( 1 - p^{7} T^{2} + p^{14} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + p^{7} T^{2} + p^{14} T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - 8814 T + p^{7} T^{2} )^{2}( 1 - 8814 T + 58199425 T^{2} - 8814 p^{7} T^{3} + p^{14} T^{4} ) \)
13$C_2^2$ \( ( 1 + p^{7} T^{2} + p^{14} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 22182 T + 81702451 T^{2} - 22182 p^{7} T^{3} + p^{14} T^{4} )( 1 + 22182 T + 81702451 T^{2} + 22182 p^{7} T^{3} + p^{14} T^{4} ) \)
19$C_2^2$ \( ( 1 - 59722 T + 2672845545 T^{2} - 59722 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - p^{7} T^{2} + p^{14} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - p^{7} T^{2} + p^{14} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + p^{7} T^{2} + p^{14} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p^{7} T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 - 236886 T + p^{7} T^{2} )^{2}( 1 - 236886 T - 138639296885 T^{2} - 236886 p^{7} T^{3} + p^{14} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 + 220510 T + p^{7} T^{2} )^{2}( 1 - 220510 T - 223193951007 T^{2} - 220510 p^{7} T^{3} + p^{14} T^{4} ) \)
47$C_2^2$ \( ( 1 - p^{7} T^{2} + p^{14} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + 1030926 T + p^{7} T^{2} )^{2}( 1 + 1030926 T - 1425843067343 T^{2} + 1030926 p^{7} T^{3} + p^{14} T^{4} ) \)
61$C_2^2$ \( ( 1 + p^{7} T^{2} + p^{14} T^{4} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + 3851302 T + p^{7} T^{2} )^{2}( 1 - 3851302 T + 8771815489881 T^{2} - 3851302 p^{7} T^{3} + p^{14} T^{4} ) \)
71$C_2$ \( ( 1 + p^{7} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 4865614 T + 12626801077899 T^{2} - 4865614 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + p^{7} T^{2} + p^{14} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 4808934 T - 4010204773271 T^{2} - 4808934 p^{7} T^{3} + p^{14} T^{4} )( 1 + 4808934 T - 4010204773271 T^{2} + 4808934 p^{7} T^{3} + p^{14} T^{4} ) \)
89$C_2$ \( ( 1 - 7073118 T + p^{7} T^{2} )^{2}( 1 + 7073118 T + p^{7} T^{2} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + 9938890 T + p^{7} T^{2} )^{2}( 1 - 9938890 T + 17983249953987 T^{2} - 9938890 p^{7} T^{3} + p^{14} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.436103661002744624143126967629, −9.212794169112183583294814465348, −8.787735341831990155217067367284, −8.452470490247965684155252256184, −8.401569913921894218934222222443, −7.68467485963692991270520101243, −7.29596410674647825813593361808, −7.19099056274513325517734082660, −7.00042817194734607871508430700, −6.34652734264972349476980400951, −6.28827585123594796128231943562, −6.22686504063554157609741425721, −5.45324432761821132225210075626, −4.91960026086787666065580647978, −4.48438450234708353311861552860, −4.01866334637567175363932493556, −3.77493392911711761742846270637, −3.20915436999931203413967186192, −3.09116906566398791224464295541, −3.08321737735635882748448955492, −2.07176341725895568888870341981, −1.63483072558830432818538792385, −1.37290450211577231122732501750, −0.988888052446850999153925741886, −0.875158607874203256893342963208, 0.875158607874203256893342963208, 0.988888052446850999153925741886, 1.37290450211577231122732501750, 1.63483072558830432818538792385, 2.07176341725895568888870341981, 3.08321737735635882748448955492, 3.09116906566398791224464295541, 3.20915436999931203413967186192, 3.77493392911711761742846270637, 4.01866334637567175363932493556, 4.48438450234708353311861552860, 4.91960026086787666065580647978, 5.45324432761821132225210075626, 6.22686504063554157609741425721, 6.28827585123594796128231943562, 6.34652734264972349476980400951, 7.00042817194734607871508430700, 7.19099056274513325517734082660, 7.29596410674647825813593361808, 7.68467485963692991270520101243, 8.401569913921894218934222222443, 8.452470490247965684155252256184, 8.787735341831990155217067367284, 9.212794169112183583294814465348, 9.436103661002744624143126967629

Graph of the $Z$-function along the critical line