Properties

Label 8-72e4-1.1-c5e4-0-1
Degree $8$
Conductor $26873856$
Sign $1$
Analytic cond. $17781.6$
Root an. cond. $3.39818$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 32·4-s + 243·9-s + 1.42e3·11-s + 64·12-s − 5.76e3·19-s + 6.25e3·25-s + 1.45e3·27-s + 2.84e3·33-s + 7.77e3·36-s + 4.17e4·41-s + 2.25e4·43-s + 4.55e4·44-s − 3.36e4·49-s − 1.15e4·57-s + 1.45e5·59-s − 3.27e4·64-s − 6.71e4·67-s − 1.00e5·73-s + 1.25e4·75-s − 1.84e5·76-s + 2.90e3·81-s − 8.54e4·97-s + 3.45e5·99-s + 2.00e5·100-s + 4.64e4·108-s + 9.62e5·121-s + ⋯
L(s)  = 1  + 0.128·3-s + 4-s + 9-s + 3.54·11-s + 0.128·12-s − 3.66·19-s + 2·25-s + 0.382·27-s + 0.454·33-s + 36-s + 3.88·41-s + 1.85·43-s + 3.54·44-s − 2·49-s − 0.469·57-s + 5.44·59-s − 64-s − 1.82·67-s − 2.21·73-s + 0.256·75-s − 3.66·76-s + 0.0491·81-s − 0.922·97-s + 3.54·99-s + 2·100-s + 0.382·108-s + 5.97·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(17781.6\)
Root analytic conductor: \(3.39818\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 26873856,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(8.517604665\)
\(L(\frac12)\) \(\approx\) \(8.517604665\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
3$C_2^2$ \( 1 - 2 T - 239 T^{2} - 2 p^{5} T^{3} + p^{10} T^{4} \)
good5$C_2^2$ \( ( 1 - p^{5} T^{2} + p^{10} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + p^{5} T^{2} + p^{10} T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - 474 T + p^{5} T^{2} )^{2}( 1 - 474 T + 63625 T^{2} - 474 p^{5} T^{3} + p^{10} T^{4} ) \)
13$C_2^2$ \( ( 1 + p^{5} T^{2} + p^{10} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 1914 T + 2243539 T^{2} - 1914 p^{5} T^{3} + p^{10} T^{4} )( 1 + 1914 T + 2243539 T^{2} + 1914 p^{5} T^{3} + p^{10} T^{4} ) \)
19$C_2^2$ \( ( 1 + 2882 T + 5829825 T^{2} + 2882 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - p^{5} T^{2} + p^{10} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - p^{5} T^{2} + p^{10} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + p^{5} T^{2} + p^{10} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 - 13926 T + p^{5} T^{2} )^{2}( 1 - 13926 T + 78077275 T^{2} - 13926 p^{5} T^{3} + p^{10} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 - 22550 T + p^{5} T^{2} )^{2}( 1 + 22550 T + 361494057 T^{2} + 22550 p^{5} T^{3} + p^{10} T^{4} ) \)
47$C_2^2$ \( ( 1 - p^{5} T^{2} + p^{10} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 - 48486 T + p^{5} T^{2} )^{2}( 1 - 48486 T + 1635967897 T^{2} - 48486 p^{5} T^{3} + p^{10} T^{4} ) \)
61$C_2^2$ \( ( 1 + p^{5} T^{2} + p^{10} T^{4} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + 67186 T + p^{5} T^{2} )^{2}( 1 - 67186 T + 3163833489 T^{2} - 67186 p^{5} T^{3} + p^{10} T^{4} ) \)
71$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 50402 T + 467290011 T^{2} + 50402 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + p^{5} T^{2} + p^{10} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 89298 T + 4035092161 T^{2} - 89298 p^{5} T^{3} + p^{10} T^{4} )( 1 + 89298 T + 4035092161 T^{2} + 89298 p^{5} T^{3} + p^{10} T^{4} ) \)
89$C_2$ \( ( 1 - 7218 T + p^{5} T^{2} )^{2}( 1 + 7218 T + p^{5} T^{2} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + 85450 T + p^{5} T^{2} )^{2}( 1 - 85450 T - 1285637757 T^{2} - 85450 p^{5} T^{3} + p^{10} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.993252489793456584299168695219, −9.364064421178765124826338723949, −9.128498370841829531110678998681, −8.857838555633353646569381406057, −8.850292364926323428582517597495, −8.425006551889607456415549684671, −7.997690727559923816334350026253, −7.33120119805322704151136221899, −7.29448229970059844308554052645, −6.80713527577230047221331732441, −6.57154242186691608347509741169, −6.51308451208156845906228025216, −6.04243042793749869712498886843, −5.93158057794869630945499069994, −5.09555420621402732554174559827, −4.41117537509778747182293966677, −4.23492546532234285554245044412, −4.08408213424440842267020516906, −3.86016343296943946427710899201, −2.91366191153633931510454446880, −2.45564919940376800252853649021, −2.13392564217581523689071972740, −1.39917972284551575093876861804, −1.21716875341406124253350772264, −0.58935850413005895260933129088, 0.58935850413005895260933129088, 1.21716875341406124253350772264, 1.39917972284551575093876861804, 2.13392564217581523689071972740, 2.45564919940376800252853649021, 2.91366191153633931510454446880, 3.86016343296943946427710899201, 4.08408213424440842267020516906, 4.23492546532234285554245044412, 4.41117537509778747182293966677, 5.09555420621402732554174559827, 5.93158057794869630945499069994, 6.04243042793749869712498886843, 6.51308451208156845906228025216, 6.57154242186691608347509741169, 6.80713527577230047221331732441, 7.29448229970059844308554052645, 7.33120119805322704151136221899, 7.997690727559923816334350026253, 8.425006551889607456415549684671, 8.850292364926323428582517597495, 8.857838555633353646569381406057, 9.128498370841829531110678998681, 9.364064421178765124826338723949, 9.993252489793456584299168695219

Graph of the $Z$-function along the critical line