Properties

Label 8-72e4-1.1-c4e4-0-0
Degree $8$
Conductor $26873856$
Sign $1$
Analytic cond. $3068.36$
Root an. cond. $2.72811$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 14·3-s + 16·4-s − 112·6-s + 128·8-s + 81·9-s − 46·11-s + 224·12-s − 1.02e3·16-s + 1.14e3·17-s − 648·18-s − 868·19-s + 368·22-s + 1.79e3·24-s − 1.25e3·25-s + 658·27-s + 2.04e3·32-s − 644·33-s − 9.18e3·34-s + 1.29e3·36-s + 6.94e3·38-s − 1.24e3·41-s − 3.50e3·43-s − 736·44-s − 1.43e4·48-s − 4.80e3·49-s + 1.00e4·50-s + ⋯
L(s)  = 1  − 2·2-s + 14/9·3-s + 4-s − 3.11·6-s + 2·8-s + 9-s − 0.380·11-s + 14/9·12-s − 4·16-s + 3.97·17-s − 2·18-s − 2.40·19-s + 0.760·22-s + 28/9·24-s − 2·25-s + 0.902·27-s + 2·32-s − 0.591·33-s − 7.94·34-s + 36-s + 4.80·38-s − 0.741·41-s − 1.89·43-s − 0.380·44-s − 6.22·48-s − 2·49-s + 4·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(3068.36\)
Root analytic conductor: \(2.72811\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 26873856,\ (\ :2, 2, 2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.2818543856\)
\(L(\frac12)\) \(\approx\) \(0.2818543856\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
3$C_2^2$ \( 1 - 14 T + 115 T^{2} - 14 p^{4} T^{3} + p^{8} T^{4} \)
good5$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
7$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + 46 T + p^{4} T^{2} )^{2}( 1 - 46 T - 12525 T^{2} - 46 p^{4} T^{3} + p^{8} T^{4} ) \)
13$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 574 T + 245955 T^{2} - 574 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 434 T + 58035 T^{2} + 434 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
23$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
29$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
31$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{4}( 1 + p^{2} T )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 1246 T + p^{4} T^{2} )^{2}( 1 - 1246 T - 1273245 T^{2} - 1246 p^{4} T^{3} + p^{8} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 + 3502 T + p^{4} T^{2} )^{2}( 1 - 3502 T + 8845203 T^{2} - 3502 p^{4} T^{3} + p^{8} T^{4} ) \)
47$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{4}( 1 + p^{2} T )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + 238 T + p^{4} T^{2} )^{2}( 1 - 238 T - 12060717 T^{2} - 238 p^{4} T^{3} + p^{8} T^{4} ) \)
61$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + 5134 T + p^{4} T^{2} )^{2}( 1 - 5134 T + 6206835 T^{2} - 5134 p^{4} T^{3} + p^{8} T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{4}( 1 + p^{2} T )^{4} \)
73$C_2^2$ \( ( 1 + 9506 T + 61965795 T^{2} + 9506 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2}( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 11186 T + 77668275 T^{2} + 11186 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 5474 T + p^{4} T^{2} )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + 9982 T + p^{4} T^{2} )^{2}( 1 - 9982 T + 11111043 T^{2} - 9982 p^{4} T^{3} + p^{8} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05364892948215981610385522936, −9.693399612412808229708047169069, −9.635485227422535820377368208379, −9.030243831535480027677069179175, −8.923726487406258958489816134270, −8.334542554923458423539578210860, −8.207161180523451874841366126490, −8.116766694676548186500469178137, −8.106547624685539481603952609808, −7.39209671709336525306920536719, −7.26961645617041486660887792140, −7.00987799463277227291138896052, −6.27103291761577520281832530315, −5.80363886411074850871392015906, −5.65022940945208647733538085605, −4.89127520338179107123425568710, −4.62392915783376035711623098210, −4.18781910535171885655499609603, −3.56641808130936709509242194335, −3.31145389456675216663386978292, −2.83192436061249773932247940315, −1.89600058657620902435439036041, −1.70008433285611515682936190055, −1.17464568122165450526280867946, −0.18531306804979588220954390891, 0.18531306804979588220954390891, 1.17464568122165450526280867946, 1.70008433285611515682936190055, 1.89600058657620902435439036041, 2.83192436061249773932247940315, 3.31145389456675216663386978292, 3.56641808130936709509242194335, 4.18781910535171885655499609603, 4.62392915783376035711623098210, 4.89127520338179107123425568710, 5.65022940945208647733538085605, 5.80363886411074850871392015906, 6.27103291761577520281832530315, 7.00987799463277227291138896052, 7.26961645617041486660887792140, 7.39209671709336525306920536719, 8.106547624685539481603952609808, 8.116766694676548186500469178137, 8.207161180523451874841366126490, 8.334542554923458423539578210860, 8.923726487406258958489816134270, 9.030243831535480027677069179175, 9.635485227422535820377368208379, 9.693399612412808229708047169069, 10.05364892948215981610385522936

Graph of the $Z$-function along the critical line