L(s) = 1 | + 2·3-s + 2·4-s + 3·9-s − 18·11-s + 4·12-s − 4·19-s + 10·25-s + 10·27-s − 36·33-s + 6·36-s + 18·41-s − 10·43-s − 36·44-s − 14·49-s − 8·57-s + 18·59-s − 8·64-s + 14·67-s − 4·73-s + 20·75-s − 8·76-s + 20·81-s − 10·97-s − 54·99-s + 20·100-s + 20·108-s + 169·121-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 4-s + 9-s − 5.42·11-s + 1.15·12-s − 0.917·19-s + 2·25-s + 1.92·27-s − 6.26·33-s + 36-s + 2.81·41-s − 1.52·43-s − 5.42·44-s − 2·49-s − 1.05·57-s + 2.34·59-s − 64-s + 1.71·67-s − 0.468·73-s + 2.30·75-s − 0.917·76-s + 20/9·81-s − 1.01·97-s − 5.42·99-s + 2·100-s + 1.92·108-s + 15.3·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9940479530\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9940479530\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 3 | $C_2^2$ | \( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
good | 5 | $C_2^2$ | \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) |
| 7 | $C_2^2$ | \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) |
| 11 | $C_2$$\times$$C_2^2$ | \( ( 1 + 6 T + p T^{2} )^{2}( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \) |
| 13 | $C_2^2$ | \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) |
| 17 | $C_2^2$$\times$$C_2^2$ | \( ( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \) |
| 19 | $C_2^2$ | \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) |
| 23 | $C_2^2$ | \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) |
| 29 | $C_2^2$ | \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) |
| 31 | $C_2^2$ | \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - p T^{2} )^{4} \) |
| 41 | $C_2$$\times$$C_2^2$ | \( ( 1 - 6 T + p T^{2} )^{2}( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \) |
| 43 | $C_2$$\times$$C_2^2$ | \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 57 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \) |
| 47 | $C_2^2$ | \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) |
| 53 | $C_2$ | \( ( 1 + p T^{2} )^{4} \) |
| 59 | $C_2$$\times$$C_2^2$ | \( ( 1 - 6 T + p T^{2} )^{2}( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \) |
| 61 | $C_2^2$ | \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) |
| 67 | $C_2$$\times$$C_2^2$ | \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + 129 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{4} \) |
| 73 | $C_2^2$ | \( ( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) |
| 79 | $C_2^2$ | \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) |
| 83 | $C_2^2$$\times$$C_2^2$ | \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \) |
| 89 | $C_2$ | \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \) |
| 97 | $C_2$$\times$$C_2^2$ | \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82257133950445822006569975190, −10.65776290524712935405876278964, −10.32980201828229267574607016979, −10.12341874679207186463613675070, −9.918566536362943500092950394430, −9.487939876288600041548634650951, −8.976847986167529653157356874982, −8.542133080835188017557302649565, −8.323805465493111519116727905457, −8.193271439978103121820558346488, −7.86177047040072258534126108663, −7.51439919872580222149725574821, −7.33584879936360968511900110449, −6.88674705314451405041949624189, −6.56921485253876360296646337170, −6.10263812145192357411800228002, −5.54245330779234409972191726848, −5.14872745705443002593593979642, −4.91148107712993364417179104961, −4.73303866172930221653669861932, −3.89150805359828389086771997983, −3.00141070934747919454022704351, −2.87003400110696441359977158822, −2.46497567617430314622651811016, −2.26572919897296598094005540027,
2.26572919897296598094005540027, 2.46497567617430314622651811016, 2.87003400110696441359977158822, 3.00141070934747919454022704351, 3.89150805359828389086771997983, 4.73303866172930221653669861932, 4.91148107712993364417179104961, 5.14872745705443002593593979642, 5.54245330779234409972191726848, 6.10263812145192357411800228002, 6.56921485253876360296646337170, 6.88674705314451405041949624189, 7.33584879936360968511900110449, 7.51439919872580222149725574821, 7.86177047040072258534126108663, 8.193271439978103121820558346488, 8.323805465493111519116727905457, 8.542133080835188017557302649565, 8.976847986167529653157356874982, 9.487939876288600041548634650951, 9.918566536362943500092950394430, 10.12341874679207186463613675070, 10.32980201828229267574607016979, 10.65776290524712935405876278964, 10.82257133950445822006569975190