Properties

Label 8-725e4-1.1-c1e4-0-7
Degree $8$
Conductor $276281640625$
Sign $1$
Analytic cond. $1123.20$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 12·9-s + 16·11-s − 5·16-s + 8·19-s − 8·29-s − 16·31-s + 24·36-s + 4·41-s + 32·44-s − 36·61-s − 20·64-s + 16·76-s + 8·79-s + 90·81-s + 28·89-s + 192·99-s − 4·101-s + 40·109-s − 16·116-s + 128·121-s − 32·124-s + 127-s + 131-s + 137-s + 139-s − 60·144-s + ⋯
L(s)  = 1  + 4-s + 4·9-s + 4.82·11-s − 5/4·16-s + 1.83·19-s − 1.48·29-s − 2.87·31-s + 4·36-s + 0.624·41-s + 4.82·44-s − 4.60·61-s − 5/2·64-s + 1.83·76-s + 0.900·79-s + 10·81-s + 2.96·89-s + 19.2·99-s − 0.398·101-s + 3.83·109-s − 1.48·116-s + 11.6·121-s − 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(1123.20\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 29^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.988497590\)
\(L(\frac12)\) \(\approx\) \(9.988497590\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
3$C_2$ \( ( 1 - p T^{2} )^{4} \)
7$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^3$ \( 1 - 142 T^{4} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 238 T^{4} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
43$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 2702 T^{4} + p^{4} T^{8} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 + 18 T + 162 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 6398 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} )( 1 + 22 T + 242 T^{2} + 22 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 174 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36810030931368005630144869504, −7.29900167194767675144871450527, −7.19106774701321637461178132177, −6.71385539111449231587168571173, −6.63513986018119108592325641281, −6.45670073165580359800912194663, −6.11531943848649549094240119005, −6.06227702888113593816081160643, −5.91790464333501754952404888116, −5.14550684794159414929233760858, −4.93474394528426623314835201522, −4.78580527348481998391933332409, −4.50129014447432163138427666023, −4.12150757926765518937995571478, −3.96434248664853086030964984420, −3.95760664875555329702150104354, −3.57290454014270065124473920355, −3.26401193636293725225566517783, −3.20339209386446897602257084474, −2.06555761095676407786282457783, −1.98770239337389398298616446257, −1.84945081486006008176496898445, −1.45656544434698960730519338340, −1.24785424071002230282571312133, −0.942753274648310271344165429892, 0.942753274648310271344165429892, 1.24785424071002230282571312133, 1.45656544434698960730519338340, 1.84945081486006008176496898445, 1.98770239337389398298616446257, 2.06555761095676407786282457783, 3.20339209386446897602257084474, 3.26401193636293725225566517783, 3.57290454014270065124473920355, 3.95760664875555329702150104354, 3.96434248664853086030964984420, 4.12150757926765518937995571478, 4.50129014447432163138427666023, 4.78580527348481998391933332409, 4.93474394528426623314835201522, 5.14550684794159414929233760858, 5.91790464333501754952404888116, 6.06227702888113593816081160643, 6.11531943848649549094240119005, 6.45670073165580359800912194663, 6.63513986018119108592325641281, 6.71385539111449231587168571173, 7.19106774701321637461178132177, 7.29900167194767675144871450527, 7.36810030931368005630144869504

Graph of the $Z$-function along the critical line