Properties

Label 8-70e4-1.1-c5e4-0-0
Degree $8$
Conductor $24010000$
Sign $1$
Analytic cond. $15886.7$
Root an. cond. $3.35065$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 22·3-s + 16·4-s − 50·5-s − 176·6-s + 70·7-s − 128·8-s + 501·9-s − 400·10-s − 876·11-s − 352·12-s − 568·13-s + 560·14-s + 1.10e3·15-s − 1.02e3·16-s + 516·17-s + 4.00e3·18-s − 1.02e3·19-s − 800·20-s − 1.54e3·21-s − 7.00e3·22-s − 234·23-s + 2.81e3·24-s + 625·25-s − 4.54e3·26-s − 1.17e4·27-s + 1.12e3·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.41·3-s + 1/2·4-s − 0.894·5-s − 1.99·6-s + 0.539·7-s − 0.707·8-s + 2.06·9-s − 1.26·10-s − 2.18·11-s − 0.705·12-s − 0.932·13-s + 0.763·14-s + 1.26·15-s − 16-s + 0.433·17-s + 2.91·18-s − 0.650·19-s − 0.447·20-s − 0.762·21-s − 3.08·22-s − 0.0922·23-s + 0.997·24-s + 1/5·25-s − 1.31·26-s − 3.09·27-s + 0.269·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24010000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24010000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(24010000\)    =    \(2^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(15886.7\)
Root analytic conductor: \(3.35065\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 24010000,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.06097001574\)
\(L(\frac12)\) \(\approx\) \(0.06097001574\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
5$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10 p T - 243 p^{2} T^{2} - 10 p^{6} T^{3} + p^{10} T^{4} \)
good3$D_4\times C_2$ \( 1 + 22 T - 17 T^{2} + 110 p T^{3} + 8260 p^{2} T^{4} + 110 p^{6} T^{5} - 17 p^{10} T^{6} + 22 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 876 T + 348830 T^{2} + 84484944 T^{3} + 25656657339 T^{4} + 84484944 p^{5} T^{5} + 348830 p^{10} T^{6} + 876 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 + 284 T + 518526 T^{2} + 284 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 516 T - 2502646 T^{2} + 36538992 T^{3} + 5272778939763 T^{4} + 36538992 p^{5} T^{5} - 2502646 p^{10} T^{6} - 516 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 + 1024 T - 4150502 T^{2} + 252805120 T^{3} + 18302967807259 T^{4} + 252805120 p^{5} T^{5} - 4150502 p^{10} T^{6} + 1024 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 234 T - 6259513 T^{2} - 1534669578 T^{3} - 1908946606596 T^{4} - 1534669578 p^{5} T^{5} - 6259513 p^{10} T^{6} + 234 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 + 4218 T + 33926779 T^{2} + 4218 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 7756 T - 12046250 T^{2} + 115901661904 T^{3} + 2671267690979059 T^{4} + 115901661904 p^{5} T^{5} - 12046250 p^{10} T^{6} + 7756 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 + 11968 T - 8046602 T^{2} + 150697609216 T^{3} + 8144596213046059 T^{4} + 150697609216 p^{5} T^{5} - 8046602 p^{10} T^{6} + 11968 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 - 28806 T + 427615411 T^{2} - 28806 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 8930 T + 66789837 T^{2} + 8930 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 8604 T - 228410866 T^{2} - 1344377856528 T^{3} + 21892489688709363 T^{4} - 1344377856528 p^{5} T^{5} - 228410866 p^{10} T^{6} + 8604 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 19200 T - 517034410 T^{2} + 946241740800 T^{3} + 455368103623815051 T^{4} + 946241740800 p^{5} T^{5} - 517034410 p^{10} T^{6} + 19200 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 - 7464 T + 1005574298 T^{2} + 17762167382400 T^{3} + 351293610028629099 T^{4} + 17762167382400 p^{5} T^{5} + 1005574298 p^{10} T^{6} - 7464 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 + 51154 T + 865736761 T^{2} + 3161437565362 T^{3} + 142558492729586908 T^{4} + 3161437565362 p^{5} T^{5} + 865736761 p^{10} T^{6} + 51154 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 - 24446 T - 1708241177 T^{2} + 9641554249966 T^{3} + 2687253522031535188 T^{4} + 9641554249966 p^{5} T^{5} - 1708241177 p^{10} T^{6} - 24446 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 + 77496 T + 4875166942 T^{2} + 77496 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 13892 T - 3970492838 T^{2} - 240849993872 T^{3} + 12636866816792785603 T^{4} - 240849993872 p^{5} T^{5} - 3970492838 p^{10} T^{6} - 13892 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 + 17944 T - 5062478702 T^{2} - 13810545050240 T^{3} + 18533423700737711779 T^{4} - 13810545050240 p^{5} T^{5} - 5062478702 p^{10} T^{6} + 17944 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 - 74694 T + 7297411861 T^{2} - 74694 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 4662 T - 6517652551 T^{2} + 21579149064186 T^{3} + 11460494414079116868 T^{4} + 21579149064186 p^{5} T^{5} - 6517652551 p^{10} T^{6} - 4662 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 - 29068 T + 12461384934 T^{2} - 29068 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10103944985850199396376787712, −9.596103550172876349229361551206, −9.454982535523793959435412193768, −8.974290083146459078787875146334, −8.724058016509755525107299651740, −7.965572731794512043921542603559, −7.88039684474708693666687861615, −7.38594462956484485538307211634, −7.34195610034711512293348333711, −7.31628170859459693070947532328, −6.47312883602950603658787647408, −5.91978908986727907701299511751, −5.73040686791279475948446401462, −5.67565652503655742993616523188, −5.14197107247030967904065355719, −4.68413524510773006242454013984, −4.62546347047846754933246126765, −4.25679204503432429158227588129, −3.68112296528519599086399669974, −3.44200326049778433679233057091, −2.71830569015420429579911689952, −2.12292731646315642823854362317, −1.73167841669899950645740544991, −0.68026331897781471131948454418, −0.06240190827927000998525769694, 0.06240190827927000998525769694, 0.68026331897781471131948454418, 1.73167841669899950645740544991, 2.12292731646315642823854362317, 2.71830569015420429579911689952, 3.44200326049778433679233057091, 3.68112296528519599086399669974, 4.25679204503432429158227588129, 4.62546347047846754933246126765, 4.68413524510773006242454013984, 5.14197107247030967904065355719, 5.67565652503655742993616523188, 5.73040686791279475948446401462, 5.91978908986727907701299511751, 6.47312883602950603658787647408, 7.31628170859459693070947532328, 7.34195610034711512293348333711, 7.38594462956484485538307211634, 7.88039684474708693666687861615, 7.965572731794512043921542603559, 8.724058016509755525107299651740, 8.974290083146459078787875146334, 9.454982535523793959435412193768, 9.596103550172876349229361551206, 10.10103944985850199396376787712

Graph of the $Z$-function along the critical line