Properties

Label 8-6825e4-1.1-c1e4-0-9
Degree $8$
Conductor $2.170\times 10^{15}$
Sign $1$
Analytic cond. $8.82102\times 10^{6}$
Root an. cond. $7.38226$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4·3-s − 3·4-s − 4·6-s + 4·7-s + 3·8-s + 10·9-s + 2·11-s − 12·12-s + 4·13-s − 4·14-s + 4·16-s − 5·17-s − 10·18-s − 15·19-s + 16·21-s − 2·22-s − 8·23-s + 12·24-s − 4·26-s + 20·27-s − 12·28-s − 5·29-s − 15·31-s − 3·32-s + 8·33-s + 5·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 2.30·3-s − 3/2·4-s − 1.63·6-s + 1.51·7-s + 1.06·8-s + 10/3·9-s + 0.603·11-s − 3.46·12-s + 1.10·13-s − 1.06·14-s + 16-s − 1.21·17-s − 2.35·18-s − 3.44·19-s + 3.49·21-s − 0.426·22-s − 1.66·23-s + 2.44·24-s − 0.784·26-s + 3.84·27-s − 2.26·28-s − 0.928·29-s − 2.69·31-s − 0.530·32-s + 1.39·33-s + 0.857·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(8.82102\times 10^{6}\)
Root analytic conductor: \(7.38226\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{4} \)
5 \( 1 \)
7$C_1$ \( ( 1 - T )^{4} \)
13$C_1$ \( ( 1 - T )^{4} \)
good2$C_2 \wr S_4$ \( 1 + T + p^{2} T^{2} + p^{2} T^{3} + 9 T^{4} + p^{3} T^{5} + p^{4} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 2 T + 3 p T^{2} - 6 p T^{3} + 487 T^{4} - 6 p^{2} T^{5} + 3 p^{3} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 5 T + 58 T^{2} + 179 T^{3} + 1305 T^{4} + 179 p T^{5} + 58 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 15 T + 141 T^{2} + 904 T^{3} + 4497 T^{4} + 904 p T^{5} + 141 p^{2} T^{6} + 15 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 8 T + 94 T^{2} + 464 T^{3} + 3135 T^{4} + 464 p T^{5} + 94 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 5 T + 48 T^{2} + 291 T^{3} + 2263 T^{4} + 291 p T^{5} + 48 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 15 T + 200 T^{2} + 1533 T^{3} + 10517 T^{4} + 1533 p T^{5} + 200 p^{2} T^{6} + 15 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 12 T + 128 T^{2} + 915 T^{3} + 5979 T^{4} + 915 p T^{5} + 128 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 5 T + 100 T^{2} + 669 T^{3} + 5033 T^{4} + 669 p T^{5} + 100 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 11 T + 169 T^{2} + 1226 T^{3} + 10939 T^{4} + 1226 p T^{5} + 169 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 4 T + 77 T^{2} - 712 T^{3} + 3001 T^{4} - 712 p T^{5} + 77 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 15 T + 246 T^{2} + 2337 T^{3} + 20413 T^{4} + 2337 p T^{5} + 246 p^{2} T^{6} + 15 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 11 T + 174 T^{2} + 1533 T^{3} + 15199 T^{4} + 1533 p T^{5} + 174 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 20 T + 348 T^{2} + 3767 T^{3} + 35009 T^{4} + 3767 p T^{5} + 348 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 2 T + 75 T^{2} - 576 T^{3} + 2797 T^{4} - 576 p T^{5} + 75 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 20 T + 306 T^{2} - 3288 T^{3} + 32139 T^{4} - 3288 p T^{5} + 306 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 6 T + 68 T^{2} + 39 T^{3} + 5069 T^{4} + 39 p T^{5} + 68 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 7 T + 213 T^{2} + 766 T^{3} + 19505 T^{4} + 766 p T^{5} + 213 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 2 T + 82 T^{2} + 213 T^{3} + 15107 T^{4} + 213 p T^{5} + 82 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 8 T + 232 T^{2} + 2127 T^{3} + 26639 T^{4} + 2127 p T^{5} + 232 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 5 T + 168 T^{2} - 2027 T^{3} + 16505 T^{4} - 2027 p T^{5} + 168 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.05486100478491504567377000644, −5.85829622473331384711872686083, −5.39028882615740988003803107406, −5.37589151190773663711430303469, −5.20490982281099240852764928310, −4.76062382126980782253355774914, −4.70224707698562141406311475144, −4.66349168391998819633484098522, −4.49236304977322013517821075249, −4.03126957804955666134647461349, −4.01688332434781721463716466246, −3.99076540833524129747765715712, −3.72379089048399628500164204229, −3.53318899705612767567655836687, −3.33928800435196220154872345399, −3.31331564781433251291079931158, −2.66916502315050766973428129285, −2.52634517617403420563659840059, −2.35287181170098952865404895392, −2.09520223521070325632832171423, −1.85290867583768269353534101551, −1.74235598887455610903099581995, −1.46124395711701147430769459909, −1.34947483790525251513118596874, −1.23444191774232137957432120299, 0, 0, 0, 0, 1.23444191774232137957432120299, 1.34947483790525251513118596874, 1.46124395711701147430769459909, 1.74235598887455610903099581995, 1.85290867583768269353534101551, 2.09520223521070325632832171423, 2.35287181170098952865404895392, 2.52634517617403420563659840059, 2.66916502315050766973428129285, 3.31331564781433251291079931158, 3.33928800435196220154872345399, 3.53318899705612767567655836687, 3.72379089048399628500164204229, 3.99076540833524129747765715712, 4.01688332434781721463716466246, 4.03126957804955666134647461349, 4.49236304977322013517821075249, 4.66349168391998819633484098522, 4.70224707698562141406311475144, 4.76062382126980782253355774914, 5.20490982281099240852764928310, 5.37589151190773663711430303469, 5.39028882615740988003803107406, 5.85829622473331384711872686083, 6.05486100478491504567377000644

Graph of the $Z$-function along the critical line