# Properties

 Label 8-637e4-1.1-c3e4-0-0 Degree $8$ Conductor $164648481361$ Sign $1$ Analytic cond. $1.99536\times 10^{6}$ Root an. cond. $6.13059$ Motivic weight $3$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 4·2-s + 5·3-s + 5·4-s + 36·5-s − 20·6-s + 2·8-s − 31·9-s − 144·10-s − 95·11-s + 25·12-s + 52·13-s + 180·15-s − 49·16-s + 146·17-s + 124·18-s + 48·19-s + 180·20-s + 380·22-s − 121·23-s + 10·24-s + 651·25-s − 208·26-s − 214·27-s − 440·29-s − 720·30-s + 283·31-s + 184·32-s + ⋯
 L(s)  = 1 − 1.41·2-s + 0.962·3-s + 5/8·4-s + 3.21·5-s − 1.36·6-s + 0.0883·8-s − 1.14·9-s − 4.55·10-s − 2.60·11-s + 0.601·12-s + 1.10·13-s + 3.09·15-s − 0.765·16-s + 2.08·17-s + 1.62·18-s + 0.579·19-s + 2.01·20-s + 3.68·22-s − 1.09·23-s + 0.0850·24-s + 5.20·25-s − 1.56·26-s − 1.52·27-s − 2.81·29-s − 4.38·30-s + 1.63·31-s + 1.01·32-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$8$$ Conductor: $$7^{8} \cdot 13^{4}$$ Sign: $1$ Analytic conductor: $$1.99536\times 10^{6}$$ Root analytic conductor: $$6.13059$$ Motivic weight: $$3$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{637} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(8,\ 7^{8} \cdot 13^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$7.352106744$$ $$L(\frac12)$$ $$\approx$$ $$7.352106744$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad7 $$1$$
13$C_1$ $$( 1 - p T )^{4}$$
good2$C_2 \wr S_4$ $$1 + p^{2} T + 11 T^{2} + 11 p T^{3} + 37 p T^{4} + 11 p^{4} T^{5} + 11 p^{6} T^{6} + p^{11} T^{7} + p^{12} T^{8}$$
3$C_2 \wr S_4$ $$1 - 5 T + 56 T^{2} - 221 T^{3} + 2014 T^{4} - 221 p^{3} T^{5} + 56 p^{6} T^{6} - 5 p^{9} T^{7} + p^{12} T^{8}$$
5$C_2 \wr S_4$ $$1 - 36 T + 129 p T^{2} - 8694 T^{3} + 102712 T^{4} - 8694 p^{3} T^{5} + 129 p^{7} T^{6} - 36 p^{9} T^{7} + p^{12} T^{8}$$
11$C_2 \wr S_4$ $$1 + 95 T + 7452 T^{2} + 379875 T^{3} + 16142470 T^{4} + 379875 p^{3} T^{5} + 7452 p^{6} T^{6} + 95 p^{9} T^{7} + p^{12} T^{8}$$
17$C_2 \wr S_4$ $$1 - 146 T + 16532 T^{2} - 1364486 T^{3} + 113102822 T^{4} - 1364486 p^{3} T^{5} + 16532 p^{6} T^{6} - 146 p^{9} T^{7} + p^{12} T^{8}$$
19$C_2 \wr S_4$ $$1 - 48 T + 22109 T^{2} - 1039926 T^{3} + 209516732 T^{4} - 1039926 p^{3} T^{5} + 22109 p^{6} T^{6} - 48 p^{9} T^{7} + p^{12} T^{8}$$
23$C_2 \wr S_4$ $$1 + 121 T + 43427 T^{2} + 4124692 T^{3} + 758296736 T^{4} + 4124692 p^{3} T^{5} + 43427 p^{6} T^{6} + 121 p^{9} T^{7} + p^{12} T^{8}$$
29$C_2 \wr S_4$ $$1 + 440 T + 121385 T^{2} + 24466046 T^{3} + 4246931120 T^{4} + 24466046 p^{3} T^{5} + 121385 p^{6} T^{6} + 440 p^{9} T^{7} + p^{12} T^{8}$$
31$C_2 \wr S_4$ $$1 - 283 T + 115883 T^{2} - 22509948 T^{3} + 5128506688 T^{4} - 22509948 p^{3} T^{5} + 115883 p^{6} T^{6} - 283 p^{9} T^{7} + p^{12} T^{8}$$
37$C_2 \wr S_4$ $$1 + 209 T + 110126 T^{2} + 34693527 T^{3} + 6353129866 T^{4} + 34693527 p^{3} T^{5} + 110126 p^{6} T^{6} + 209 p^{9} T^{7} + p^{12} T^{8}$$
41$C_2 \wr S_4$ $$1 - 93 T + 29038 T^{2} - 7679451 T^{3} + 6599220738 T^{4} - 7679451 p^{3} T^{5} + 29038 p^{6} T^{6} - 93 p^{9} T^{7} + p^{12} T^{8}$$
43$C_2 \wr S_4$ $$1 - 526 T + 389933 T^{2} - 128599950 T^{3} + 49380663820 T^{4} - 128599950 p^{3} T^{5} + 389933 p^{6} T^{6} - 526 p^{9} T^{7} + p^{12} T^{8}$$
47$C_2 \wr S_4$ $$1 - 783 T + 602263 T^{2} - 253090440 T^{3} + 102444830856 T^{4} - 253090440 p^{3} T^{5} + 602263 p^{6} T^{6} - 783 p^{9} T^{7} + p^{12} T^{8}$$
53$C_2 \wr S_4$ $$1 + 340 T + 376337 T^{2} + 45654214 T^{3} + 56508894008 T^{4} + 45654214 p^{3} T^{5} + 376337 p^{6} T^{6} + 340 p^{9} T^{7} + p^{12} T^{8}$$
59$C_2 \wr S_4$ $$1 - 922 T + 707452 T^{2} - 393421354 T^{3} + 216277613526 T^{4} - 393421354 p^{3} T^{5} + 707452 p^{6} T^{6} - 922 p^{9} T^{7} + p^{12} T^{8}$$
61$C_2 \wr S_4$ $$1 - 141 T + 898886 T^{2} - 95008047 T^{3} + 305023047986 T^{4} - 95008047 p^{3} T^{5} + 898886 p^{6} T^{6} - 141 p^{9} T^{7} + p^{12} T^{8}$$
67$C_2 \wr S_4$ $$1 + 523 T + 1250888 T^{2} + 464057559 T^{3} + 570573180206 T^{4} + 464057559 p^{3} T^{5} + 1250888 p^{6} T^{6} + 523 p^{9} T^{7} + p^{12} T^{8}$$
71$C_2 \wr S_4$ $$1 - 1468 T + 2102788 T^{2} - 1679767276 T^{3} + 1251908502678 T^{4} - 1679767276 p^{3} T^{5} + 2102788 p^{6} T^{6} - 1468 p^{9} T^{7} + p^{12} T^{8}$$
73$C_2 \wr S_4$ $$1 - 47 T + 562529 T^{2} - 207207510 T^{3} + 173123133922 T^{4} - 207207510 p^{3} T^{5} + 562529 p^{6} T^{6} - 47 p^{9} T^{7} + p^{12} T^{8}$$
79$C_2 \wr S_4$ $$1 - 1025 T + 2071119 T^{2} - 1439609696 T^{3} + 1542926691608 T^{4} - 1439609696 p^{3} T^{5} + 2071119 p^{6} T^{6} - 1025 p^{9} T^{7} + p^{12} T^{8}$$
83$C_2 \wr S_4$ $$1 - 1190 T + 2309473 T^{2} - 1949369070 T^{3} + 1975771812452 T^{4} - 1949369070 p^{3} T^{5} + 2309473 p^{6} T^{6} - 1190 p^{9} T^{7} + p^{12} T^{8}$$
89$C_2 \wr S_4$ $$1 - 2962 T + 5920469 T^{2} - 7608132226 T^{3} + 7558598583356 T^{4} - 7608132226 p^{3} T^{5} + 5920469 p^{6} T^{6} - 2962 p^{9} T^{7} + p^{12} T^{8}$$
97$C_2 \wr S_4$ $$1 + 2715 T + 4771625 T^{2} + 5953314954 T^{3} + 6129100067190 T^{4} + 5953314954 p^{3} T^{5} + 4771625 p^{6} T^{6} + 2715 p^{9} T^{7} + p^{12} T^{8}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$