Properties

Label 8-637e4-1.1-c1e4-0-30
Degree $8$
Conductor $164648481361$
Sign $1$
Analytic cond. $669.369$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 6·4-s − 2·5-s − 4·8-s + 4·9-s + 8·10-s − 4·11-s − 14·13-s + 3·16-s − 12·17-s − 16·18-s − 12·19-s − 12·20-s + 16·22-s + 3·25-s + 56·26-s − 14·29-s − 8·31-s + 48·34-s + 24·36-s − 4·37-s + 48·38-s + 8·40-s − 6·41-s − 4·43-s − 24·44-s − 8·45-s + ⋯
L(s)  = 1  − 2.82·2-s + 3·4-s − 0.894·5-s − 1.41·8-s + 4/3·9-s + 2.52·10-s − 1.20·11-s − 3.88·13-s + 3/4·16-s − 2.91·17-s − 3.77·18-s − 2.75·19-s − 2.68·20-s + 3.41·22-s + 3/5·25-s + 10.9·26-s − 2.59·29-s − 1.43·31-s + 8.23·34-s + 4·36-s − 0.657·37-s + 7.78·38-s + 1.26·40-s − 0.937·41-s − 0.609·43-s − 3.61·44-s − 1.19·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(7^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(669.369\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 7^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
13$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
good2$D_{4}$ \( ( 1 + p T + 3 T^{2} + p^{2} T^{3} + p^{2} T^{4} )^{2} \)
3$C_2^3$ \( 1 - 4 T^{2} + 7 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
5$D_4\times C_2$ \( 1 + 2 T + T^{2} - 14 T^{3} - 36 T^{4} - 14 p T^{5} + p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 4 T - 8 T^{2} + 8 T^{3} + 279 T^{4} + 8 p T^{5} - 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 44 T^{2} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 14 T + 97 T^{2} + 574 T^{3} + 3276 T^{4} + 574 p T^{5} + 97 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 8 T - 12 T^{2} + 112 T^{3} + 2831 T^{4} + 112 p T^{5} - 12 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 2 T + 3 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T - 47 T^{2} + 6 T^{3} + 3732 T^{4} + 6 p T^{5} - 47 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 4 T - 72 T^{2} + 8 T^{3} + 5207 T^{4} + 8 p T^{5} - 72 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 4 T - 50 T^{2} - 112 T^{3} + 1395 T^{4} - 112 p T^{5} - 50 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 3 T - 44 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 + 12 T + 136 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 14 T + 33 T^{2} + 574 T^{3} + 10892 T^{4} + 574 p T^{5} + 33 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^3$ \( 1 - 116 T^{2} + 8967 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 12 T - 2 T^{2} - 48 T^{3} + 6051 T^{4} - 48 p T^{5} - 2 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 10 T - 39 T^{2} + 70 T^{3} + 6692 T^{4} + 70 p T^{5} - 39 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 + 12 T - 32 T^{2} + 216 T^{3} + 13359 T^{4} + 216 p T^{5} - 32 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 12 T + 152 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 16 T + 6 T^{2} - 896 T^{3} + 28259 T^{4} - 896 p T^{5} + 6 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.170301915572458953524296689063, −7.966190924863698471418262415748, −7.61228671327449205766684590908, −7.52028026769307896824607471479, −7.24177386163416309840394217232, −7.21917998714636082607153865935, −7.02804045079666062742447333555, −6.45149239711639396395104514240, −6.44472985891058246765144223269, −6.36846092663247169429493261788, −5.63515935094153939837657519106, −5.49047674192859160471002756438, −5.08562042895818766304510628573, −4.84823248232045327911259167677, −4.53513858379358614263131347168, −4.43367381039975092870509394830, −4.38726002725472160724470477233, −3.95720729443932931772682316162, −3.39633099732029916415493261932, −3.19198563007039513627829142427, −2.63787080760923238035191879374, −2.19592306652031372783635833388, −2.18173533752776634188123322736, −1.95276472145636761828754934479, −1.38472437391578007720764886498, 0, 0, 0, 0, 1.38472437391578007720764886498, 1.95276472145636761828754934479, 2.18173533752776634188123322736, 2.19592306652031372783635833388, 2.63787080760923238035191879374, 3.19198563007039513627829142427, 3.39633099732029916415493261932, 3.95720729443932931772682316162, 4.38726002725472160724470477233, 4.43367381039975092870509394830, 4.53513858379358614263131347168, 4.84823248232045327911259167677, 5.08562042895818766304510628573, 5.49047674192859160471002756438, 5.63515935094153939837657519106, 6.36846092663247169429493261788, 6.44472985891058246765144223269, 6.45149239711639396395104514240, 7.02804045079666062742447333555, 7.21917998714636082607153865935, 7.24177386163416309840394217232, 7.52028026769307896824607471479, 7.61228671327449205766684590908, 7.966190924863698471418262415748, 8.170301915572458953524296689063

Graph of the $Z$-function along the critical line