L(s) = 1 | − 3·2-s − 2·3-s + 3·4-s − 3·5-s + 6·6-s + 9-s + 9·10-s − 6·12-s − 14·13-s + 6·15-s − 2·16-s + 6·17-s − 3·18-s − 9·20-s − 6·23-s − 3·25-s + 42·26-s − 4·27-s + 9·29-s − 18·30-s − 30·31-s − 6·32-s − 18·34-s + 3·36-s − 24·37-s + 28·39-s − 18·41-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 1.15·3-s + 3/2·4-s − 1.34·5-s + 2.44·6-s + 1/3·9-s + 2.84·10-s − 1.73·12-s − 3.88·13-s + 1.54·15-s − 1/2·16-s + 1.45·17-s − 0.707·18-s − 2.01·20-s − 1.25·23-s − 3/5·25-s + 8.23·26-s − 0.769·27-s + 1.67·29-s − 3.28·30-s − 5.38·31-s − 1.06·32-s − 3.08·34-s + 1/2·36-s − 3.94·37-s + 4.48·39-s − 2.81·41-s + ⋯ |
Λ(s)=(=((78⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((78⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
78⋅134
|
Sign: |
1
|
Analytic conductor: |
669.369 |
Root analytic conductor: |
2.25532 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 78⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | | 1 |
| 13 | C2 | (1+7T+pT2)2 |
good | 2 | C2×C22 | (1+T+pT2)2(1+T−T2+pT3+p2T4) |
| 3 | D4 | (1+T+T2+pT3+p2T4)2 |
| 5 | D4×C2 | 1+3T+12T2+27T3+71T4+27pT5+12p2T6+3p3T7+p4T8 |
| 11 | D4×C2 | 1−27T2+377T4−27p2T6+p4T8 |
| 17 | C22 | (1−3T−8T2−3pT3+p2T4)2 |
| 19 | D4×C2 | 1−31T2+537T4−31p2T6+p4T8 |
| 23 | D4×C2 | 1+6T+2T2−72T3−201T4−72pT5+2p2T6+6p3T7+p4T8 |
| 29 | D4×C2 | 1−9T+8T2−135T3+2139T4−135pT5+8p2T6−9p3T7+p4T8 |
| 31 | C2 | (1+4T+pT2)2(1+11T+pT2)2 |
| 37 | C2 | (1+T+pT2)2(1+11T+pT2)2 |
| 41 | D4×C2 | 1+18T+210T2+1836T3+13151T4+1836pT5+210p2T6+18p3T7+p4T8 |
| 43 | D4×C2 | 1+5T−20T2−205T3−899T4−205pT5−20p2T6+5p3T7+p4T8 |
| 47 | D4×C2 | 1+24T+327T2+3240T3+25040T4+3240pT5+327p2T6+24p3T7+p4T8 |
| 53 | D4×C2 | 1−6T+5T2+450T3−3756T4+450pT5+5p2T6−6p3T7+p4T8 |
| 59 | D4×C2 | 1−6T+21T2−54T3−2692T4−54pT5+21p2T6−6p3T7+p4T8 |
| 61 | D4 | (1−2T−66T2−2pT3+p2T4)2 |
| 67 | C22×C22 | (1−4T−51T2−4pT3+p2T4)(1+4T−51T2+4pT3+p2T4) |
| 71 | D4×C2 | 1−6T+150T2−828T3+14855T4−828pT5+150p2T6−6p3T7+p4T8 |
| 73 | C22 | (1−6T+85T2−6pT3+p2T4)2 |
| 79 | C22 | (1−6T−43T2−6pT3+p2T4)2 |
| 83 | D4×C2 | 1−270T2+31667T4−270p2T6+p4T8 |
| 89 | D4×C2 | 1+33T+588T2+7425T3+75011T4+7425pT5+588p2T6+33p3T7+p4T8 |
| 97 | D4×C2 | 1−39T+812T2−11895T3+132795T4−11895pT5+812p2T6−39p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.303402142257381408112723300160, −7.82587392553078210127500271384, −7.64677250007074815033225172550, −7.25343191510540273514513274793, −7.25024355995263600117105028241, −7.18905558440256622046945218427, −6.95645538376390165431511026074, −6.80135741074868912472326485978, −6.17124881041506771497473506334, −6.04682563206607060888512777965, −5.45459392373462712278001370540, −5.40875844360904347246112804037, −5.21519282429262463344276603999, −5.00027443910550228092071050657, −4.98262095179010938913852051827, −4.62374025012526072344057157228, −3.83316924665352311824692119410, −3.72838439381942006519464339291, −3.63688282479232588270682973216, −3.43820993912466889096361815679, −3.00238638961305347992632021906, −2.19183216262703043005804863449, −1.96800491764636992644598015215, −1.90064063071080855486757651577, −1.38228298275911195473528000535, 0, 0, 0, 0,
1.38228298275911195473528000535, 1.90064063071080855486757651577, 1.96800491764636992644598015215, 2.19183216262703043005804863449, 3.00238638961305347992632021906, 3.43820993912466889096361815679, 3.63688282479232588270682973216, 3.72838439381942006519464339291, 3.83316924665352311824692119410, 4.62374025012526072344057157228, 4.98262095179010938913852051827, 5.00027443910550228092071050657, 5.21519282429262463344276603999, 5.40875844360904347246112804037, 5.45459392373462712278001370540, 6.04682563206607060888512777965, 6.17124881041506771497473506334, 6.80135741074868912472326485978, 6.95645538376390165431511026074, 7.18905558440256622046945218427, 7.25024355995263600117105028241, 7.25343191510540273514513274793, 7.64677250007074815033225172550, 7.82587392553078210127500271384, 8.303402142257381408112723300160