Properties

Label 8-637e4-1.1-c1e4-0-18
Degree $8$
Conductor $164648481361$
Sign $1$
Analytic cond. $669.369$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 6·5-s + 4·9-s − 4·13-s + 4·16-s + 6·19-s − 12·20-s + 6·23-s + 17·25-s + 12·29-s + 2·31-s + 8·36-s + 4·37-s + 24·41-s − 20·43-s − 24·45-s − 6·47-s − 8·52-s + 6·53-s − 12·59-s − 12·61-s + 16·64-s + 24·65-s + 12·67-s − 24·71-s + 10·73-s + 12·76-s + ⋯
L(s)  = 1  + 4-s − 2.68·5-s + 4/3·9-s − 1.10·13-s + 16-s + 1.37·19-s − 2.68·20-s + 1.25·23-s + 17/5·25-s + 2.22·29-s + 0.359·31-s + 4/3·36-s + 0.657·37-s + 3.74·41-s − 3.04·43-s − 3.57·45-s − 0.875·47-s − 1.10·52-s + 0.824·53-s − 1.56·59-s − 1.53·61-s + 2·64-s + 2.97·65-s + 1.46·67-s − 2.84·71-s + 1.17·73-s + 1.37·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(7^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(669.369\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{637} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 7^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.591495667\)
\(L(\frac12)\) \(\approx\) \(2.591495667\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
13$C_1$ \( ( 1 + T )^{4} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} + p^{2} T^{4} ) \)
3$C_2^3$ \( 1 - 4 T^{2} + 7 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
5$C_2^2$$\times$$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
11$C_2^3$ \( 1 - 4 T^{2} - 105 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^3$ \( 1 - 32 T^{2} + 735 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 6 T + 7 T^{2} + 54 T^{3} - 204 T^{4} + 54 p T^{5} + 7 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 6 T - 11 T^{2} - 6 T^{3} + 852 T^{4} - 6 p T^{5} - 11 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 2 T - 41 T^{2} + 34 T^{3} + 940 T^{4} + 34 p T^{5} - 41 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 4 T - 44 T^{2} + 56 T^{3} + 1639 T^{4} + 56 p T^{5} - 44 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 12 T + 110 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
47$D_4\times C_2$ \( 1 + 6 T - 65 T^{2} + 42 T^{3} + 6300 T^{4} + 42 p T^{5} - 65 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 6 T - 71 T^{2} - 6 T^{3} + 6732 T^{4} - 6 p T^{5} - 71 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 12 T + 22 T^{2} + 48 T^{3} + 2907 T^{4} + 48 p T^{5} + 22 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 6 T - 25 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 12 T + 46 T^{2} + 432 T^{3} - 4533 T^{4} + 432 p T^{5} + 46 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 12 T + 128 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 10 T - 53 T^{2} - 70 T^{3} + 10780 T^{4} - 70 p T^{5} - 53 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 + 14 T + 61 T^{2} - 322 T^{3} - 3500 T^{4} - 322 p T^{5} + 61 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 18 T + 229 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 6 T - 149 T^{2} + 42 T^{3} + 23100 T^{4} + 42 p T^{5} - 149 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 + 2 T + 33 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55185644320047912807710415014, −7.52155129495034149648520088515, −7.30138030968960101635145609711, −6.93834892555442160158262301177, −6.83678929496537229541908280635, −6.52703594860114808257873580176, −6.31221564393132257067580687216, −6.20273345457375572043241372900, −5.65125628102944348544439401092, −5.28555950376612400791514332397, −5.14020520497608031039897388308, −4.85699648190543861347734672917, −4.51526380296329360908899372453, −4.43785922933592142099961430160, −4.21938404747790318117721286375, −3.79209419023328486459927886650, −3.57050807769704823976783886776, −3.25519199638047478425067199214, −2.94196093513247449332513168048, −2.70969450347938496056195857568, −2.57718109392760885401424828131, −1.75582133398507214641648096402, −1.48219492623847272883945898622, −0.843035439869330365332228107079, −0.63924813676598929352401460753, 0.63924813676598929352401460753, 0.843035439869330365332228107079, 1.48219492623847272883945898622, 1.75582133398507214641648096402, 2.57718109392760885401424828131, 2.70969450347938496056195857568, 2.94196093513247449332513168048, 3.25519199638047478425067199214, 3.57050807769704823976783886776, 3.79209419023328486459927886650, 4.21938404747790318117721286375, 4.43785922933592142099961430160, 4.51526380296329360908899372453, 4.85699648190543861347734672917, 5.14020520497608031039897388308, 5.28555950376612400791514332397, 5.65125628102944348544439401092, 6.20273345457375572043241372900, 6.31221564393132257067580687216, 6.52703594860114808257873580176, 6.83678929496537229541908280635, 6.93834892555442160158262301177, 7.30138030968960101635145609711, 7.52155129495034149648520088515, 7.55185644320047912807710415014

Graph of the $Z$-function along the critical line