Properties

Label 8-637e4-1.1-c1e4-0-16
Degree $8$
Conductor $164648481361$
Sign $1$
Analytic cond. $669.369$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 3-s + 3·4-s − 3·6-s + 9-s − 9·11-s − 3·12-s + 14·13-s − 2·16-s − 6·17-s + 3·18-s − 9·19-s − 27·22-s − 6·23-s + 15·25-s + 42·26-s + 4·27-s + 9·29-s + 6·32-s + 9·33-s − 18·34-s + 3·36-s + 24·37-s − 27·38-s − 14·39-s + 18·41-s − 5·43-s + ⋯
L(s)  = 1  + 2.12·2-s − 0.577·3-s + 3/2·4-s − 1.22·6-s + 1/3·9-s − 2.71·11-s − 0.866·12-s + 3.88·13-s − 1/2·16-s − 1.45·17-s + 0.707·18-s − 2.06·19-s − 5.75·22-s − 1.25·23-s + 3·25-s + 8.23·26-s + 0.769·27-s + 1.67·29-s + 1.06·32-s + 1.56·33-s − 3.08·34-s + 1/2·36-s + 3.94·37-s − 4.37·38-s − 2.24·39-s + 2.81·41-s − 0.762·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(7^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(669.369\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 7^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.323170502\)
\(L(\frac12)\) \(\approx\) \(6.323170502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 - T + p T^{2} )^{2}( 1 - T - T^{2} - p T^{3} + p^{2} T^{4} ) \)
3$D_4\times C_2$ \( 1 + T - 5 T^{3} - 11 T^{4} - 5 p T^{5} + p^{3} T^{7} + p^{4} T^{8} \)
5$D_4\times C_2$ \( 1 - 3 p T^{2} + 101 T^{4} - 3 p^{3} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 9 T + 54 T^{2} + 243 T^{3} + 905 T^{4} + 243 p T^{5} + 54 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 + 9 T + 56 T^{2} + 261 T^{3} + 993 T^{4} + 261 p T^{5} + 56 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 6 T + 2 T^{2} - 72 T^{3} - 201 T^{4} - 72 p T^{5} + 2 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 9 T + 8 T^{2} - 135 T^{3} + 2139 T^{4} - 135 p T^{5} + 8 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 - T + p T^{2} )^{2} \)
41$D_4\times C_2$ \( 1 - 18 T + 210 T^{2} - 1836 T^{3} + 13151 T^{4} - 1836 p T^{5} + 210 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 5 T - 20 T^{2} - 205 T^{3} - 899 T^{4} - 205 p T^{5} - 20 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 78 T^{2} + 4595 T^{4} - 78 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 6 T + 31 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 6 T + 21 T^{2} - 54 T^{3} - 2692 T^{4} - 54 p T^{5} + 21 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 2 T + 70 T^{2} + 376 T^{3} + 391 T^{4} + 376 p T^{5} + 70 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} ) \)
71$D_4\times C_2$ \( 1 - 6 T + 150 T^{2} - 828 T^{3} + 14855 T^{4} - 828 p T^{5} + 150 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
83$D_4\times C_2$ \( 1 - 270 T^{2} + 31667 T^{4} - 270 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 33 T + 588 T^{2} + 7425 T^{3} + 75011 T^{4} + 7425 p T^{5} + 588 p^{2} T^{6} + 33 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 39 T + 812 T^{2} + 11895 T^{3} + 132795 T^{4} + 11895 p T^{5} + 812 p^{2} T^{6} + 39 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88306655228460058818132712041, −7.17463226117505783742998317534, −6.77265181825732844970368427372, −6.69056594169602440215232195658, −6.58536546964143114660212051529, −6.33124027713543121655735952926, −6.02767251626610196200092231380, −6.01455915238214103871027464167, −5.65447540937476669134007282665, −5.32543485852150628011804409859, −5.12697922980039934763406892369, −5.06120530117797538182440499266, −4.42662472598668251575783098717, −4.20362601693622709480390893399, −4.19278484603384417249220550813, −4.14286784632279039139331341837, −4.14259736532376176106522393614, −3.03231169592073939083722835950, −3.00009406879540505672048318217, −2.88501055851535715114662281431, −2.56374128699802295244760649674, −2.23740586056421171270311813393, −1.45806149572910146250777351636, −1.02454964244305663340257213510, −0.62688186587820710323029445047, 0.62688186587820710323029445047, 1.02454964244305663340257213510, 1.45806149572910146250777351636, 2.23740586056421171270311813393, 2.56374128699802295244760649674, 2.88501055851535715114662281431, 3.00009406879540505672048318217, 3.03231169592073939083722835950, 4.14259736532376176106522393614, 4.14286784632279039139331341837, 4.19278484603384417249220550813, 4.20362601693622709480390893399, 4.42662472598668251575783098717, 5.06120530117797538182440499266, 5.12697922980039934763406892369, 5.32543485852150628011804409859, 5.65447540937476669134007282665, 6.01455915238214103871027464167, 6.02767251626610196200092231380, 6.33124027713543121655735952926, 6.58536546964143114660212051529, 6.69056594169602440215232195658, 6.77265181825732844970368427372, 7.17463226117505783742998317534, 7.88306655228460058818132712041

Graph of the $Z$-function along the critical line