Properties

Label 8-5733e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.080\times 10^{15}$
Sign $1$
Analytic cond. $4.39173\times 10^{6}$
Root an. cond. $6.76596$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·5-s + 3·10-s + 2·11-s − 4·13-s − 16-s − 2·17-s − 7·19-s − 2·22-s − 3·23-s − 25-s + 4·26-s − 29-s − 3·31-s + 32-s + 2·34-s + 10·37-s + 7·38-s − 16·41-s + 3·43-s + 3·46-s + 5·47-s + 50-s − 5·53-s − 6·55-s + 58-s − 20·59-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.34·5-s + 0.948·10-s + 0.603·11-s − 1.10·13-s − 1/4·16-s − 0.485·17-s − 1.60·19-s − 0.426·22-s − 0.625·23-s − 1/5·25-s + 0.784·26-s − 0.185·29-s − 0.538·31-s + 0.176·32-s + 0.342·34-s + 1.64·37-s + 1.13·38-s − 2.49·41-s + 0.457·43-s + 0.442·46-s + 0.729·47-s + 0.141·50-s − 0.686·53-s − 0.809·55-s + 0.131·58-s − 2.60·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 7^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.39173\times 10^{6}\)
Root analytic conductor: \(6.76596\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{8} \cdot 7^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
13$C_1$ \( ( 1 + T )^{4} \)
good2$C_2 \wr S_4$ \( 1 + T + T^{2} + T^{3} + p T^{4} + p T^{5} + p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 3 T + 2 p T^{2} + p^{2} T^{3} + 74 T^{4} + p^{3} T^{5} + 2 p^{3} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 2 T + 20 T^{2} - 34 T^{3} + 294 T^{4} - 34 p T^{5} + 20 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 2 T + 40 T^{2} + 62 T^{3} + 878 T^{4} + 62 p T^{5} + 40 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 7 T + 64 T^{2} + 351 T^{3} + 1774 T^{4} + 351 p T^{5} + 64 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 3 T + 40 T^{2} - 49 T^{3} + 494 T^{4} - 49 p T^{5} + 40 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr S_4$ \( 1 + T + 86 T^{2} + 35 T^{3} + 3378 T^{4} + 35 p T^{5} + 86 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 3 T - 4 T^{2} + 119 T^{3} + 58 p T^{4} + 119 p T^{5} - 4 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 10 T + 64 T^{2} - 270 T^{3} + 1870 T^{4} - 270 p T^{5} + 64 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 16 T + 4 p T^{2} + 1280 T^{3} + 8694 T^{4} + 1280 p T^{5} + 4 p^{3} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 3 T + 128 T^{2} - 275 T^{3} + 7246 T^{4} - 275 p T^{5} + 128 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 5 T + 148 T^{2} - 689 T^{3} + 9638 T^{4} - 689 p T^{5} + 148 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 5 T + 174 T^{2} + 727 T^{3} + 12802 T^{4} + 727 p T^{5} + 174 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 20 T + 316 T^{2} + 3236 T^{3} + 28790 T^{4} + 3236 p T^{5} + 316 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 12 T + 180 T^{2} + 1508 T^{3} + 15014 T^{4} + 1508 p T^{5} + 180 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 22 T + 228 T^{2} + 1254 T^{3} + 6086 T^{4} + 1254 p T^{5} + 228 p^{2} T^{6} + 22 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 52 T^{2} - 304 T^{3} + 7478 T^{4} - 304 p T^{5} + 52 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 13 T + 126 T^{2} + 261 T^{3} - 3934 T^{4} + 261 p T^{5} + 126 p^{2} T^{6} - 13 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 11 T + 196 T^{2} - 1167 T^{3} + 15030 T^{4} - 1167 p T^{5} + 196 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2 \wr S_4$ \( 1 - T + 296 T^{2} - 329 T^{3} + 35310 T^{4} - 329 p T^{5} + 296 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 5 T + 194 T^{2} + 139 T^{3} + 16986 T^{4} + 139 p T^{5} + 194 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 17 T + 374 T^{2} - 4127 T^{3} + 52210 T^{4} - 4127 p T^{5} + 374 p^{2} T^{6} - 17 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.22990041440798402899152382151, −5.86911447022884152008077434673, −5.69209077603490395745469986542, −5.53795868160919085390447662320, −5.45917633279771461146456915261, −4.99353186951057381344112732701, −4.93839525140265462414638901037, −4.64441805420676099603666516172, −4.56729295247629563909694239013, −4.20542055827670338463232149552, −4.15250843735192242550808251397, −4.04982139901124565441565025778, −4.02809745942750714628333507919, −3.47090250326482962683171520744, −3.40650829547879088130661958246, −3.01951775836285878222624563232, −2.93962049313617378947003947423, −2.85489606518411439928105635833, −2.28927227031623131388669179107, −2.21237405843254983204492030968, −2.02128732798285343792710446009, −1.68795370205762329259032125000, −1.50751898291570420595350312586, −1.11834739631990087472559495899, −0.917038887603706134983942892517, 0, 0, 0, 0, 0.917038887603706134983942892517, 1.11834739631990087472559495899, 1.50751898291570420595350312586, 1.68795370205762329259032125000, 2.02128732798285343792710446009, 2.21237405843254983204492030968, 2.28927227031623131388669179107, 2.85489606518411439928105635833, 2.93962049313617378947003947423, 3.01951775836285878222624563232, 3.40650829547879088130661958246, 3.47090250326482962683171520744, 4.02809745942750714628333507919, 4.04982139901124565441565025778, 4.15250843735192242550808251397, 4.20542055827670338463232149552, 4.56729295247629563909694239013, 4.64441805420676099603666516172, 4.93839525140265462414638901037, 4.99353186951057381344112732701, 5.45917633279771461146456915261, 5.53795868160919085390447662320, 5.69209077603490395745469986542, 5.86911447022884152008077434673, 6.22990041440798402899152382151

Graph of the $Z$-function along the critical line