Properties

Label 8-567e4-1.1-c1e4-0-7
Degree $8$
Conductor $103355177121$
Sign $1$
Analytic cond. $420.185$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·7-s − 4·13-s + 4·16-s − 16·19-s − 2·25-s − 2·28-s + 8·31-s + 8·37-s + 8·43-s + 49-s − 4·52-s + 20·61-s + 11·64-s + 8·67-s + 56·73-s − 16·76-s − 16·79-s + 8·91-s − 28·97-s − 2·100-s + 8·103-s + 8·109-s − 8·112-s + 10·121-s + 8·124-s + 127-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.755·7-s − 1.10·13-s + 16-s − 3.67·19-s − 2/5·25-s − 0.377·28-s + 1.43·31-s + 1.31·37-s + 1.21·43-s + 1/7·49-s − 0.554·52-s + 2.56·61-s + 11/8·64-s + 0.977·67-s + 6.55·73-s − 1.83·76-s − 1.80·79-s + 0.838·91-s − 2.84·97-s − 1/5·100-s + 0.788·103-s + 0.766·109-s − 0.755·112-s + 0.909·121-s + 0.718·124-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{16} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(420.185\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{16} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.269726297\)
\(L(\frac12)\) \(\approx\) \(2.269726297\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
5$C_2^3$ \( 1 + 2 T^{2} - 21 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - 10 T^{2} - 21 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
23$C_2^3$ \( 1 - 34 T^{2} + 627 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
41$C_2^3$ \( 1 + 26 T^{2} - 1005 T^{4} + 26 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 46 T^{2} - 93 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 70 T^{2} + 1419 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 166 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 19 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.997396278611694818498002768736, −7.46653983252148169539255046945, −7.18035384163905091696878695690, −6.87674200832465847078516757210, −6.79623694807527420097752725568, −6.59529482658329391243123707675, −6.44498463330237847956534700962, −6.04698237815152493125001954417, −5.93280252992874800060660115368, −5.58329743053943267709444836293, −5.29091289216703518474563171252, −5.21590318024642083996024362424, −4.48555863951209342944657356987, −4.41333633923385585149827293939, −4.40664850805581626324290538819, −3.93664318576452541472925165667, −3.67056451189458619865424150178, −3.29083657515027176306926193048, −3.04323684556029606517731640544, −2.35527024725192331897776410508, −2.31227417119174298209987017253, −2.28847172101989537014774372157, −1.79393065669732477356681612123, −0.77910926802181957947642901557, −0.62310919697730656263421114287, 0.62310919697730656263421114287, 0.77910926802181957947642901557, 1.79393065669732477356681612123, 2.28847172101989537014774372157, 2.31227417119174298209987017253, 2.35527024725192331897776410508, 3.04323684556029606517731640544, 3.29083657515027176306926193048, 3.67056451189458619865424150178, 3.93664318576452541472925165667, 4.40664850805581626324290538819, 4.41333633923385585149827293939, 4.48555863951209342944657356987, 5.21590318024642083996024362424, 5.29091289216703518474563171252, 5.58329743053943267709444836293, 5.93280252992874800060660115368, 6.04698237815152493125001954417, 6.44498463330237847956534700962, 6.59529482658329391243123707675, 6.79623694807527420097752725568, 6.87674200832465847078516757210, 7.18035384163905091696878695690, 7.46653983252148169539255046945, 7.997396278611694818498002768736

Graph of the $Z$-function along the critical line