Properties

Label 8-567e4-1.1-c1e4-0-12
Degree $8$
Conductor $103355177121$
Sign $1$
Analytic cond. $420.185$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 10·7-s + 12·13-s + 4·16-s − 5·25-s + 10·28-s − 6·31-s − 4·37-s − 4·43-s + 61·49-s + 12·52-s − 24·61-s + 11·64-s + 20·67-s − 4·79-s + 120·91-s + 48·97-s − 5·100-s − 6·103-s − 28·109-s + 40·112-s − 17·121-s − 6·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 1/2·4-s + 3.77·7-s + 3.32·13-s + 16-s − 25-s + 1.88·28-s − 1.07·31-s − 0.657·37-s − 0.609·43-s + 61/7·49-s + 1.66·52-s − 3.07·61-s + 11/8·64-s + 2.44·67-s − 0.450·79-s + 12.5·91-s + 4.87·97-s − 1/2·100-s − 0.591·103-s − 2.68·109-s + 3.77·112-s − 1.54·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{16} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(420.185\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{16} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.633736925\)
\(L(\frac12)\) \(\approx\) \(7.633736925\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
5$C_2$$\times$$C_2^2$ \( ( 1 + p T^{2} )^{2}( 1 - p T^{2} + p^{2} T^{4} ) \)
11$C_2^3$ \( 1 + 17 T^{2} + 168 T^{4} + 17 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^3$ \( 1 + 41 T^{2} + 1152 T^{4} + 41 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^3$ \( 1 + 38 T^{2} + 603 T^{4} + 38 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
41$C_2^3$ \( 1 - 67 T^{2} + 2808 T^{4} - 67 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 34 T^{2} - 1053 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 58 T^{2} - 117 T^{4} - 58 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 10 T + 33 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 2 T - 75 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 106 T^{2} + 4347 T^{4} - 106 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 43 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )^{2}( 1 - 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.927709407128270379635016921442, −7.56600871008272304298893486481, −7.44118954379238510665287134487, −7.15588130562237895904015758190, −6.83567068908960919764116912653, −6.44596277746386511962424158404, −6.25469127971860898288268069103, −6.03731989250275003562667513781, −5.82069851885546312400547872077, −5.38210960989430636847805161569, −5.36808412690314150499155533024, −5.15448782288626654496235070064, −4.79147558419075862325611196995, −4.52983620796335113849128062076, −4.16721308387248423838542376528, −3.86496772589655833612195259618, −3.77305798286006032997579131066, −3.47323369269430713544560509064, −3.11389435560840924760071421220, −2.50991023953333009337863163064, −2.04054001506005170146877753108, −1.94106768991506357502833670448, −1.40442597066638605488782204109, −1.35352997901084349026376865349, −0.975915184238140800645085870741, 0.975915184238140800645085870741, 1.35352997901084349026376865349, 1.40442597066638605488782204109, 1.94106768991506357502833670448, 2.04054001506005170146877753108, 2.50991023953333009337863163064, 3.11389435560840924760071421220, 3.47323369269430713544560509064, 3.77305798286006032997579131066, 3.86496772589655833612195259618, 4.16721308387248423838542376528, 4.52983620796335113849128062076, 4.79147558419075862325611196995, 5.15448782288626654496235070064, 5.36808412690314150499155533024, 5.38210960989430636847805161569, 5.82069851885546312400547872077, 6.03731989250275003562667513781, 6.25469127971860898288268069103, 6.44596277746386511962424158404, 6.83567068908960919764116912653, 7.15588130562237895904015758190, 7.44118954379238510665287134487, 7.56600871008272304298893486481, 7.927709407128270379635016921442

Graph of the $Z$-function along the critical line