Properties

Label 8-560e4-1.1-c5e4-0-2
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $6.50720\times 10^{7}$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·3-s + 100·5-s + 196·7-s − 9-s − 770·11-s + 58·13-s − 1.40e3·15-s + 2.00e3·17-s − 564·19-s − 2.74e3·21-s + 6.34e3·23-s + 6.25e3·25-s + 4.54e3·27-s + 8.06e3·29-s + 5.85e3·31-s + 1.07e4·33-s + 1.96e4·35-s + 2.95e4·37-s − 812·39-s + 1.31e4·41-s + 5.69e3·43-s − 100·45-s − 3.99e4·47-s + 2.40e4·49-s − 2.80e4·51-s + 2.03e4·53-s − 7.70e4·55-s + ⋯
L(s)  = 1  − 0.898·3-s + 1.78·5-s + 1.51·7-s − 0.00411·9-s − 1.91·11-s + 0.0951·13-s − 1.60·15-s + 1.68·17-s − 0.358·19-s − 1.35·21-s + 2.49·23-s + 2·25-s + 1.19·27-s + 1.78·29-s + 1.09·31-s + 1.72·33-s + 2.70·35-s + 3.54·37-s − 0.0854·39-s + 1.22·41-s + 0.469·43-s − 0.00736·45-s − 2.63·47-s + 10/7·49-s − 1.51·51-s + 0.992·53-s − 3.43·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6.50720\times 10^{7}\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(19.16267355\)
\(L(\frac12)\) \(\approx\) \(19.16267355\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p^{2} T )^{4} \)
7$C_1$ \( ( 1 - p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 + 14 T + 197 T^{2} - 590 p T^{3} - 2660 p^{2} T^{4} - 590 p^{6} T^{5} + 197 p^{10} T^{6} + 14 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 70 p T + 21023 p T^{2} + 19637578 T^{3} + 191089188 p T^{4} + 19637578 p^{5} T^{5} + 21023 p^{11} T^{6} + 70 p^{16} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 58 T + 16545 T^{2} - 145783178 T^{3} + 166986478124 T^{4} - 145783178 p^{5} T^{5} + 16545 p^{10} T^{6} - 58 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 118 p T + 4854289 T^{2} - 6927024958 T^{3} + 10370794433316 T^{4} - 6927024958 p^{5} T^{5} + 4854289 p^{10} T^{6} - 118 p^{16} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 564 T + 5383008 T^{2} + 2942101428 T^{3} + 19617272900462 T^{4} + 2942101428 p^{5} T^{5} + 5383008 p^{10} T^{6} + 564 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 6340 T + 34311808 T^{2} - 112313771156 T^{3} + 339524458653534 T^{4} - 112313771156 p^{5} T^{5} + 34311808 p^{10} T^{6} - 6340 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 8066 T + 81155753 T^{2} - 495943653122 T^{3} + 2487781849071292 T^{4} - 495943653122 p^{5} T^{5} + 81155753 p^{10} T^{6} - 8066 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 5856 T + 50726908 T^{2} - 20614893408 T^{3} + 526873008129414 T^{4} - 20614893408 p^{5} T^{5} + 50726908 p^{10} T^{6} - 5856 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 29544 T + 503274316 T^{2} - 5842104413112 T^{3} + 54395104530862230 T^{4} - 5842104413112 p^{5} T^{5} + 503274316 p^{10} T^{6} - 29544 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 13156 T + 298651720 T^{2} - 4405343819852 T^{3} + 42581644195285614 T^{4} - 4405343819852 p^{5} T^{5} + 298651720 p^{10} T^{6} - 13156 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 5692 T + 287606496 T^{2} - 2029200664604 T^{3} + 57395642315310926 T^{4} - 2029200664604 p^{5} T^{5} + 287606496 p^{10} T^{6} - 5692 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 39926 T + 1274710805 T^{2} + 26196292691774 T^{3} + 462503856020375284 T^{4} + 26196292691774 p^{5} T^{5} + 1274710805 p^{10} T^{6} + 39926 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 20300 T + 1522466968 T^{2} - 21558131924404 T^{3} + 908234092089928254 T^{4} - 21558131924404 p^{5} T^{5} + 1522466968 p^{10} T^{6} - 20300 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 8432 T + 1571415692 T^{2} + 16486925913584 T^{3} + 1355165716705631254 T^{4} + 16486925913584 p^{5} T^{5} + 1571415692 p^{10} T^{6} + 8432 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 30540 T + 3596038648 T^{2} - 77370889945428 T^{3} + 4645148164184584158 T^{4} - 77370889945428 p^{5} T^{5} + 3596038648 p^{10} T^{6} - 30540 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 32792 T + 3455519004 T^{2} + 46585433101912 T^{3} + 4940466916450997462 T^{4} + 46585433101912 p^{5} T^{5} + 3455519004 p^{10} T^{6} + 32792 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 83920 T + 7440577436 T^{2} - 401437477876240 T^{3} + 20166855085955566246 T^{4} - 401437477876240 p^{5} T^{5} + 7440577436 p^{10} T^{6} - 83920 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 75424 T + 9366386460 T^{2} + 464766460237664 T^{3} + 30206547106951879910 T^{4} + 464766460237664 p^{5} T^{5} + 9366386460 p^{10} T^{6} + 75424 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 129486 T + 17859766077 T^{2} + 1282266147986022 T^{3} + 91367023735987308644 T^{4} + 1282266147986022 p^{5} T^{5} + 17859766077 p^{10} T^{6} + 129486 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 187520 T + 25575060140 T^{2} - 2347153726935680 T^{3} + 2050012627716849266 p T^{4} - 2347153726935680 p^{5} T^{5} + 25575060140 p^{10} T^{6} - 187520 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 30324 T + 19745601208 T^{2} + 427557284402268 T^{3} + \)\(15\!\cdots\!02\)\( T^{4} + 427557284402268 p^{5} T^{5} + 19745601208 p^{10} T^{6} + 30324 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 180270 T + 36873984825 T^{2} - 4248214926873030 T^{3} + \)\(47\!\cdots\!28\)\( T^{4} - 4248214926873030 p^{5} T^{5} + 36873984825 p^{10} T^{6} - 180270 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89342682674154597578805208478, −6.65693129654534909336357133865, −6.24126114980042749566032767644, −6.15960849362677327460130005710, −6.08542941046185560399351747610, −5.50700877312944534944729322455, −5.50027545396805217883079947556, −5.34236351072270408628603348105, −5.08934518354377055453882513805, −4.64315512728027604591592122854, −4.60634736533051151962885522652, −4.58403583328402529012823351978, −4.19331321034944201655774447464, −3.43858532977729998602729325809, −3.17900409763727815538663872688, −2.86781108842640752737485309125, −2.83079896193509029948357794940, −2.36807034043751547557797115082, −2.32330013601840702788840552322, −1.86571334854620312158057113258, −1.32291798221492198163200408215, −1.11491620641477688586818412561, −0.973151299250752983910274928895, −0.56450879699775939433121606626, −0.55725029117193171389570261084, 0.55725029117193171389570261084, 0.56450879699775939433121606626, 0.973151299250752983910274928895, 1.11491620641477688586818412561, 1.32291798221492198163200408215, 1.86571334854620312158057113258, 2.32330013601840702788840552322, 2.36807034043751547557797115082, 2.83079896193509029948357794940, 2.86781108842640752737485309125, 3.17900409763727815538663872688, 3.43858532977729998602729325809, 4.19331321034944201655774447464, 4.58403583328402529012823351978, 4.60634736533051151962885522652, 4.64315512728027604591592122854, 5.08934518354377055453882513805, 5.34236351072270408628603348105, 5.50027545396805217883079947556, 5.50700877312944534944729322455, 6.08542941046185560399351747610, 6.15960849362677327460130005710, 6.24126114980042749566032767644, 6.65693129654534909336357133865, 6.89342682674154597578805208478

Graph of the $Z$-function along the critical line