Properties

Label 8-560e4-1.1-c5e4-0-0
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $6.50720\times 10^{7}$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s − 100·5-s + 196·7-s − 190·9-s + 123·11-s + 789·13-s + 500·15-s + 1.05e3·17-s − 958·19-s − 980·21-s + 530·23-s + 6.25e3·25-s + 2.45e3·27-s − 5.54e3·29-s + 1.04e4·31-s − 615·33-s − 1.96e4·35-s − 2.40e4·37-s − 3.94e3·39-s − 3.54e4·41-s − 2.17e3·43-s + 1.90e4·45-s + 2.28e3·47-s + 2.40e4·49-s − 5.25e3·51-s − 2.22e4·53-s − 1.23e4·55-s + ⋯
L(s)  = 1  − 0.320·3-s − 1.78·5-s + 1.51·7-s − 0.781·9-s + 0.306·11-s + 1.29·13-s + 0.573·15-s + 0.882·17-s − 0.608·19-s − 0.484·21-s + 0.208·23-s + 2·25-s + 0.647·27-s − 1.22·29-s + 1.95·31-s − 0.0983·33-s − 2.70·35-s − 2.88·37-s − 0.415·39-s − 3.29·41-s − 0.179·43-s + 1.39·45-s + 0.151·47-s + 10/7·49-s − 0.282·51-s − 1.08·53-s − 0.548·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6.50720\times 10^{7}\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(3.746472670\)
\(L(\frac12)\) \(\approx\) \(3.746472670\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{4} \)
7$C_1$ \( ( 1 - p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 + 5 T + 215 T^{2} - 428 T^{3} + 29200 p T^{4} - 428 p^{5} T^{5} + 215 p^{10} T^{6} + 5 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 123 T + 172787 T^{2} - 27386972 T^{3} + 43153011252 T^{4} - 27386972 p^{5} T^{5} + 172787 p^{10} T^{6} - 123 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 789 T + 485125 T^{2} - 38581642 T^{3} - 54076086342 T^{4} - 38581642 p^{5} T^{5} + 485125 p^{10} T^{6} - 789 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1051 T + 4066457 T^{2} - 3404977458 T^{3} + 7501353530190 T^{4} - 3404977458 p^{5} T^{5} + 4066457 p^{10} T^{6} - 1051 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 958 T + 9387448 T^{2} + 6771508758 T^{3} + 34356193238334 T^{4} + 6771508758 p^{5} T^{5} + 9387448 p^{10} T^{6} + 958 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 530 T + 20490728 T^{2} - 10459894002 T^{3} + 185608302865806 T^{4} - 10459894002 p^{5} T^{5} + 20490728 p^{10} T^{6} - 530 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 5541 T + 49341797 T^{2} + 227093137722 T^{3} + 1146321865768026 T^{4} + 227093137722 p^{5} T^{5} + 49341797 p^{10} T^{6} + 5541 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 10440 T + 94620412 T^{2} - 542919718440 T^{3} + 3224458488249222 T^{4} - 542919718440 p^{5} T^{5} + 94620412 p^{10} T^{6} - 10440 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 24048 T + 321765148 T^{2} + 2580926443920 T^{3} + 20365849878329718 T^{4} + 2580926443920 p^{5} T^{5} + 321765148 p^{10} T^{6} + 24048 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 35414 T + 772958996 T^{2} + 11819669454226 T^{3} + 143175729036850886 T^{4} + 11819669454226 p^{5} T^{5} + 772958996 p^{10} T^{6} + 35414 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 2174 T + 390119152 T^{2} + 1775727181062 T^{3} + 72194412162722958 T^{4} + 1775727181062 p^{5} T^{5} + 390119152 p^{10} T^{6} + 2174 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 2287 T + 247149407 T^{2} + 513791739024 T^{3} + 14874205588227384 T^{4} + 513791739024 p^{5} T^{5} + 247149407 p^{10} T^{6} - 2287 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 22238 T + 1495715468 T^{2} + 22190212657122 T^{3} + 880939165865106246 T^{4} + 22190212657122 p^{5} T^{5} + 1495715468 p^{10} T^{6} + 22238 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 384 p T + 1184280236 T^{2} + 11179995989888 T^{3} + 166820726890790358 T^{4} + 11179995989888 p^{5} T^{5} + 1184280236 p^{10} T^{6} - 384 p^{16} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 20250 T + 324507820 T^{2} - 10177013411882 T^{3} - 471272477545255002 T^{4} - 10177013411882 p^{5} T^{5} + 324507820 p^{10} T^{6} + 20250 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 19456 T + 4909041004 T^{2} - 72846962352640 T^{3} + 9651201241680406966 T^{4} - 72846962352640 p^{5} T^{5} + 4909041004 p^{10} T^{6} - 19456 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 72288 T + 7606620956 T^{2} - 353978653171168 T^{3} + 20954883099118322598 T^{4} - 353978653171168 p^{5} T^{5} + 7606620956 p^{10} T^{6} - 72288 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 59464 T + 3234849724 T^{2} - 196016010601912 T^{3} + 7276303444528329766 T^{4} - 196016010601912 p^{5} T^{5} + 3234849724 p^{10} T^{6} - 59464 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 232001 T + 26640497623 T^{2} - 2104483229338464 T^{3} + \)\(13\!\cdots\!76\)\( T^{4} - 2104483229338464 p^{5} T^{5} + 26640497623 p^{10} T^{6} - 232001 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 169620 T + 16135930556 T^{2} - 1107681189987060 T^{3} + 71718565102959823446 T^{4} - 1107681189987060 p^{5} T^{5} + 16135930556 p^{10} T^{6} - 169620 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 141434 T + 18669817124 T^{2} - 1584599232069374 T^{3} + \)\(12\!\cdots\!46\)\( T^{4} - 1584599232069374 p^{5} T^{5} + 18669817124 p^{10} T^{6} - 141434 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 167159 T + 29462387305 T^{2} - 3299142326815570 T^{3} + \)\(37\!\cdots\!34\)\( T^{4} - 3299142326815570 p^{5} T^{5} + 29462387305 p^{10} T^{6} - 167159 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.69390887250201915340789915212, −6.63073032969794011927419028557, −6.60425619461527864810307725599, −6.32342568390606133305495661564, −6.22642712094793224082701063791, −5.40501138446415216694001807541, −5.31312281622242547194395011220, −5.18152834557553793637502365141, −5.17106285011796788578352574856, −4.79405802446546930383668310062, −4.39961529220900876712999082749, −4.24085381527683841464843697854, −3.83282226446828231468891677298, −3.53868376130442929029187296841, −3.41895630955680272138097520654, −3.27219151444257101861082684038, −3.08534685904069645203688427686, −2.26093759118399920484266399252, −2.09809470789570072121442738177, −1.84614581252363294746804123556, −1.57492835726781483336015394716, −1.05932542473776464243390407891, −0.67849520624019907117060449921, −0.66200319688704262055956383275, −0.26797001767747355457304519395, 0.26797001767747355457304519395, 0.66200319688704262055956383275, 0.67849520624019907117060449921, 1.05932542473776464243390407891, 1.57492835726781483336015394716, 1.84614581252363294746804123556, 2.09809470789570072121442738177, 2.26093759118399920484266399252, 3.08534685904069645203688427686, 3.27219151444257101861082684038, 3.41895630955680272138097520654, 3.53868376130442929029187296841, 3.83282226446828231468891677298, 4.24085381527683841464843697854, 4.39961529220900876712999082749, 4.79405802446546930383668310062, 5.17106285011796788578352574856, 5.18152834557553793637502365141, 5.31312281622242547194395011220, 5.40501138446415216694001807541, 6.22642712094793224082701063791, 6.32342568390606133305495661564, 6.60425619461527864810307725599, 6.63073032969794011927419028557, 6.69390887250201915340789915212

Graph of the $Z$-function along the critical line