Properties

Label 8-560e4-1.1-c2e4-0-3
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $54211.6$
Root an. cond. $3.90626$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·9-s − 56·11-s − 40·25-s + 56·29-s + 62·49-s + 64·71-s + 304·79-s + 30·81-s + 896·99-s + 296·109-s + 1.47e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 656·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 1.77·9-s − 5.09·11-s − 8/5·25-s + 1.93·29-s + 1.26·49-s + 0.901·71-s + 3.84·79-s + 0.370·81-s + 9.05·99-s + 2.71·109-s + 12.1·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 3.88·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(54211.6\)
Root analytic conductor: \(3.90626\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7026461034\)
\(L(\frac12)\) \(\approx\) \(0.7026461034\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 + 8 p T^{2} + p^{4} T^{4} \)
7$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
good3$C_2^2$ \( ( 1 + 8 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 328 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 538 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 88 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 914 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 482 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2414 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 3002 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 1934 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2458 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 2702 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6872 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 3032 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 1426 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 6658 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 76 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 8488 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 12602 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 13978 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72902976866047530754817485991, −7.52084930229740584925511925029, −7.22063476459390010492384443244, −6.71090933668969609676393932667, −6.64814043700421960211865788874, −6.28955088966645892753930971211, −5.87991185812079386102938552216, −5.69628117945090452690160273232, −5.58849580934222708569091467168, −5.48470801740968221709066742283, −5.02538708724353997295917212812, −4.89892376547895950853688563483, −4.73133064143032648434073841849, −4.47892317734127450559411228053, −3.80216004714425403692442460676, −3.64338172017229079781172550503, −3.19792585246473343816506542262, −2.93375486564566336744836396032, −2.78676732959930835206095969368, −2.29815274893213798139575876993, −2.21176869459850239082712209521, −2.20940472568138533451542597377, −1.10620557036071347937412868380, −0.44252860729259933139155984956, −0.29513670408798768302587522819, 0.29513670408798768302587522819, 0.44252860729259933139155984956, 1.10620557036071347937412868380, 2.20940472568138533451542597377, 2.21176869459850239082712209521, 2.29815274893213798139575876993, 2.78676732959930835206095969368, 2.93375486564566336744836396032, 3.19792585246473343816506542262, 3.64338172017229079781172550503, 3.80216004714425403692442460676, 4.47892317734127450559411228053, 4.73133064143032648434073841849, 4.89892376547895950853688563483, 5.02538708724353997295917212812, 5.48470801740968221709066742283, 5.58849580934222708569091467168, 5.69628117945090452690160273232, 5.87991185812079386102938552216, 6.28955088966645892753930971211, 6.64814043700421960211865788874, 6.71090933668969609676393932667, 7.22063476459390010492384443244, 7.52084930229740584925511925029, 7.72902976866047530754817485991

Graph of the $Z$-function along the critical line