Properties

Label 8-560e4-1.1-c1e4-0-4
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $399.816$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 6·5-s + 8·7-s + 2·9-s + 6·11-s − 6·13-s − 18·15-s − 9·17-s + 24·21-s + 17·25-s − 3·27-s + 12·29-s − 3·31-s + 18·33-s − 48·35-s − 30·37-s − 18·39-s − 16·43-s − 12·45-s + 18·47-s + 34·49-s − 27·51-s − 12·53-s − 36·55-s − 15·59-s − 21·61-s + 16·63-s + ⋯
L(s)  = 1  + 1.73·3-s − 2.68·5-s + 3.02·7-s + 2/3·9-s + 1.80·11-s − 1.66·13-s − 4.64·15-s − 2.18·17-s + 5.23·21-s + 17/5·25-s − 0.577·27-s + 2.22·29-s − 0.538·31-s + 3.13·33-s − 8.11·35-s − 4.93·37-s − 2.88·39-s − 2.43·43-s − 1.78·45-s + 2.62·47-s + 34/7·49-s − 3.78·51-s − 1.64·53-s − 4.85·55-s − 1.95·59-s − 2.68·61-s + 2.01·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(399.816\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.534942640\)
\(L(\frac12)\) \(\approx\) \(1.534942640\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 - T + p T^{2} )^{2}( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - 3 T + 14 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 + 3 T + 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 9 T + 35 T^{2} + 108 T^{3} + 450 T^{4} + 108 p T^{5} + 35 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^3$ \( 1 - 5 T^{2} - 336 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 13 T^{2} - 360 T^{4} - 13 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 3 T + 19 T^{2} - 216 T^{3} - 1140 T^{4} - 216 p T^{5} + 19 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 + 15 T + 112 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 145 T^{2} + 8544 T^{4} - 145 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
47$D_4\times C_2$ \( 1 - 18 T + 185 T^{2} - 1386 T^{3} + 8796 T^{4} - 1386 p T^{5} + 185 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 12 T + 67 T^{2} + 228 T^{3} + 96 T^{4} + 228 p T^{5} + 67 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + 15 T + p T^{2} )^{2}( 1 - 15 T + 166 T^{2} - 15 p T^{3} + p^{2} T^{4} ) \)
61$D_4\times C_2$ \( 1 + 21 T + 281 T^{2} + 2814 T^{3} + 23202 T^{4} + 2814 p T^{5} + 281 p^{2} T^{6} + 21 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - T - 59 T^{2} + 74 T^{3} - 956 T^{4} + 74 p T^{5} - 59 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 15 T + 31 T^{2} - 720 T^{3} + 15882 T^{4} - 720 p T^{5} + 31 p^{2} T^{6} - 15 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 15 T + 227 T^{2} - 2280 T^{3} + 22788 T^{4} - 2280 p T^{5} + 227 p^{2} T^{6} - 15 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 256 T^{2} + 28974 T^{4} - 256 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 9 T + 209 T^{2} + 1638 T^{3} + 27606 T^{4} + 1638 p T^{5} + 209 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87992139976569971252983677683, −7.75049716394205296545017759202, −7.26348537544585052039243760772, −7.19569835422291053836148471317, −7.03358834232389918778517675241, −6.75442253110355250185376604552, −6.61396137118206583193000964219, −6.24931676259091064277203067345, −5.60926204163872716876869807868, −5.50123657131675100320349625054, −4.86890309093460796137302937704, −4.82833738354876528807852985373, −4.75134454382759077070910168191, −4.53567288710972915180151236986, −4.18697626311757296010366888002, −4.02456592811304267507678057125, −3.61578201001503181297810900749, −3.32055851164108050144722219273, −3.16409121746690453604652509910, −2.82114814482273217016360053502, −2.21841482439727375486448472061, −1.96082522732491280287430236980, −1.73229560501111931033302257452, −1.35498314607043636232034577428, −0.32826091338237338288021241635, 0.32826091338237338288021241635, 1.35498314607043636232034577428, 1.73229560501111931033302257452, 1.96082522732491280287430236980, 2.21841482439727375486448472061, 2.82114814482273217016360053502, 3.16409121746690453604652509910, 3.32055851164108050144722219273, 3.61578201001503181297810900749, 4.02456592811304267507678057125, 4.18697626311757296010366888002, 4.53567288710972915180151236986, 4.75134454382759077070910168191, 4.82833738354876528807852985373, 4.86890309093460796137302937704, 5.50123657131675100320349625054, 5.60926204163872716876869807868, 6.24931676259091064277203067345, 6.61396137118206583193000964219, 6.75442253110355250185376604552, 7.03358834232389918778517675241, 7.19569835422291053836148471317, 7.26348537544585052039243760772, 7.75049716394205296545017759202, 7.87992139976569971252983677683

Graph of the $Z$-function along the critical line