Properties

Label 8-560e4-1.1-c1e4-0-12
Degree $8$
Conductor $98344960000$
Sign $1$
Analytic cond. $399.816$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 3·9-s + 4·19-s + 5·25-s + 4·29-s + 20·31-s − 12·41-s − 6·45-s − 11·49-s − 4·59-s + 18·61-s − 24·71-s + 20·79-s + 9·81-s − 14·89-s − 8·95-s + 30·101-s + 10·109-s + 22·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 0.894·5-s + 9-s + 0.917·19-s + 25-s + 0.742·29-s + 3.59·31-s − 1.87·41-s − 0.894·45-s − 1.57·49-s − 0.520·59-s + 2.30·61-s − 2.84·71-s + 2.25·79-s + 81-s − 1.48·89-s − 0.820·95-s + 2.98·101-s + 0.957·109-s + 2·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(399.816\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.796838626\)
\(L(\frac12)\) \(\approx\) \(2.796838626\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 45 T^{2} + 1496 T^{4} + 45 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 10 T^{2} - 1269 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 61 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 30 T^{2} - 1309 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 2 T - 55 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 9 T + 20 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 85 T^{2} + 2736 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 - 10 T + 21 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 7 T - 40 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79542562878136897911237145589, −7.57278738022660724743356351083, −7.14198250237981868038764672190, −7.03753563513474298923461755184, −7.03438711846053248958343253254, −6.49713149981109462916226624385, −6.36010710668812766166237250494, −6.21494961412718148333092865764, −6.00543551317566229237836022301, −5.32531175617127739089005443928, −5.31806955794598116055644838702, −4.90811077254735425857358013262, −4.78431362310224122551140672519, −4.52184968061510975186837553528, −4.23909364525897348656444060462, −4.08719133599714794544590945915, −3.52105562549289143233680009821, −3.35437359125743949095575594146, −3.06542520238267471807881358429, −2.82254329471857880622157732076, −2.45006403632303302109154058238, −1.77581895021649955158819762914, −1.64583999910844361337124012831, −0.860766102457155957346083476536, −0.71844865382083135598185067560, 0.71844865382083135598185067560, 0.860766102457155957346083476536, 1.64583999910844361337124012831, 1.77581895021649955158819762914, 2.45006403632303302109154058238, 2.82254329471857880622157732076, 3.06542520238267471807881358429, 3.35437359125743949095575594146, 3.52105562549289143233680009821, 4.08719133599714794544590945915, 4.23909364525897348656444060462, 4.52184968061510975186837553528, 4.78431362310224122551140672519, 4.90811077254735425857358013262, 5.31806955794598116055644838702, 5.32531175617127739089005443928, 6.00543551317566229237836022301, 6.21494961412718148333092865764, 6.36010710668812766166237250494, 6.49713149981109462916226624385, 7.03438711846053248958343253254, 7.03753563513474298923461755184, 7.14198250237981868038764672190, 7.57278738022660724743356351083, 7.79542562878136897911237145589

Graph of the $Z$-function along the critical line