Properties

Label 8-546e4-1.1-c5e4-0-0
Degree $8$
Conductor $88873149456$
Sign $1$
Analytic cond. $5.88048\times 10^{7}$
Root an. cond. $9.35786$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s − 36·3-s + 160·4-s − 6·5-s + 576·6-s − 196·7-s − 1.28e3·8-s + 810·9-s + 96·10-s + 621·11-s − 5.76e3·12-s + 676·13-s + 3.13e3·14-s + 216·15-s + 8.96e3·16-s − 1.85e3·17-s − 1.29e4·18-s + 2.08e3·19-s − 960·20-s + 7.05e3·21-s − 9.93e3·22-s − 2.47e3·23-s + 4.60e4·24-s − 5.38e3·25-s − 1.08e4·26-s − 1.45e4·27-s − 3.13e4·28-s + ⋯
L(s)  = 1  − 2.82·2-s − 2.30·3-s + 5·4-s − 0.107·5-s + 6.53·6-s − 1.51·7-s − 7.07·8-s + 10/3·9-s + 0.303·10-s + 1.54·11-s − 11.5·12-s + 1.10·13-s + 4.27·14-s + 0.247·15-s + 35/4·16-s − 1.55·17-s − 9.42·18-s + 1.32·19-s − 0.536·20-s + 3.49·21-s − 4.37·22-s − 0.974·23-s + 16.3·24-s − 1.72·25-s − 3.13·26-s − 3.84·27-s − 7.55·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(5.88048\times 10^{7}\)
Root analytic conductor: \(9.35786\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.3114292518\)
\(L(\frac12)\) \(\approx\) \(0.3114292518\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{2} T )^{4} \)
3$C_1$ \( ( 1 + p^{2} T )^{4} \)
7$C_1$ \( ( 1 + p^{2} T )^{4} \)
13$C_1$ \( ( 1 - p^{2} T )^{4} \)
good5$C_2 \wr S_4$ \( 1 + 6 T + 5417 T^{2} - 25026 p T^{3} + 17222708 T^{4} - 25026 p^{6} T^{5} + 5417 p^{10} T^{6} + 6 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 621 T + 127594 T^{2} - 6521413 T^{3} + 7299299386 T^{4} - 6521413 p^{5} T^{5} + 127594 p^{10} T^{6} - 621 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 109 p T + 4489376 T^{2} + 6581325403 T^{3} + 9309972762254 T^{4} + 6581325403 p^{5} T^{5} + 4489376 p^{10} T^{6} + 109 p^{16} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 2088 T + 10311291 T^{2} - 14811233328 T^{3} + 38873825383840 T^{4} - 14811233328 p^{5} T^{5} + 10311291 p^{10} T^{6} - 2088 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 2472 T + 14466963 T^{2} + 26526175520 T^{3} + 113451725025880 T^{4} + 26526175520 p^{5} T^{5} + 14466963 p^{10} T^{6} + 2472 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 4752 T + 36634379 T^{2} - 191269418068 T^{3} + 986424652465080 T^{4} - 191269418068 p^{5} T^{5} + 36634379 p^{10} T^{6} - 4752 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 11 T + 95327956 T^{2} + 28991897183 T^{3} + 3814766314517718 T^{4} + 28991897183 p^{5} T^{5} + 95327956 p^{10} T^{6} + 11 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 7137 T + 272488524 T^{2} + 1363797411187 T^{3} + 27966215223604038 T^{4} + 1363797411187 p^{5} T^{5} + 272488524 p^{10} T^{6} + 7137 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 6830 T + 265552888 T^{2} + 2718827283890 T^{3} + 35452081873788174 T^{4} + 2718827283890 p^{5} T^{5} + 265552888 p^{10} T^{6} + 6830 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 12516 T + 328251327 T^{2} + 2430551612764 T^{3} + 45771159013705224 T^{4} + 2430551612764 p^{5} T^{5} + 328251327 p^{10} T^{6} + 12516 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 6059 T - 157456804 T^{2} + 499372914345 T^{3} + 1306570021721946 p T^{4} + 499372914345 p^{5} T^{5} - 157456804 p^{10} T^{6} - 6059 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 25191 T + 608724894 T^{2} + 6484219303517 T^{3} + 31084035032615266 T^{4} + 6484219303517 p^{5} T^{5} + 608724894 p^{10} T^{6} + 25191 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 2236 T + 1294004532 T^{2} - 24693495137308 T^{3} + 859988768329627270 T^{4} - 24693495137308 p^{5} T^{5} + 1294004532 p^{10} T^{6} - 2236 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 64811 T + 2461398154 T^{2} + 42214234516033 T^{3} + 903120616854138506 T^{4} + 42214234516033 p^{5} T^{5} + 2461398154 p^{10} T^{6} + 64811 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 73860 T + 4913845120 T^{2} + 203578957601220 T^{3} + 8801025581842178798 T^{4} + 203578957601220 p^{5} T^{5} + 4913845120 p^{10} T^{6} + 73860 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 47432 T + 4417110740 T^{2} + 63595823052968 T^{3} + 6634008058554110518 T^{4} + 63595823052968 p^{5} T^{5} + 4417110740 p^{10} T^{6} + 47432 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 26848 T + 4216017443 T^{2} + 133307783999572 T^{3} + 10376180114041944800 T^{4} + 133307783999572 p^{5} T^{5} + 4216017443 p^{10} T^{6} + 26848 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 46667 T + 5966723606 T^{2} - 443191044103599 T^{3} + 18068260439790391186 T^{4} - 443191044103599 p^{5} T^{5} + 5966723606 p^{10} T^{6} - 46667 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 122127 T + 14138416938 T^{2} + 960838950372191 T^{3} + 73761068377554675418 T^{4} + 960838950372191 p^{5} T^{5} + 14138416938 p^{10} T^{6} + 122127 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 262569 T + 40388168210 T^{2} + 4212171803812999 T^{3} + \)\(35\!\cdots\!38\)\( T^{4} + 4212171803812999 p^{5} T^{5} + 40388168210 p^{10} T^{6} + 262569 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 249995 T + 48739316990 T^{2} - 6058832468033413 T^{3} + \)\(66\!\cdots\!62\)\( T^{4} - 6058832468033413 p^{5} T^{5} + 48739316990 p^{10} T^{6} - 249995 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.87891995944659982199825288385, −6.58943830788247338767376565944, −6.53907012703381438087869558560, −6.49052889545852220656594027118, −6.38537998282885303827214316003, −5.72469974560839986398772614806, −5.60793718174759904250853917699, −5.59601156314010914923735264584, −5.58039131494802204448754153881, −4.50177728076626727311180309991, −4.48401696986073467866375957900, −4.21677793741455449805911174773, −4.14641377712937276509438435189, −3.37598525960059443243688909245, −3.29552022458622653598223473575, −2.94721907897404388683590600807, −2.91011669761311660132782406942, −1.89546546919949856688134504693, −1.71577268114011329513538862082, −1.67469241477578144635741045037, −1.58266842640160045423948640681, −0.879031802551730720358223794363, −0.59451529518200381082641057592, −0.36851373480585066085757257052, −0.32293541259717728494689598322, 0.32293541259717728494689598322, 0.36851373480585066085757257052, 0.59451529518200381082641057592, 0.879031802551730720358223794363, 1.58266842640160045423948640681, 1.67469241477578144635741045037, 1.71577268114011329513538862082, 1.89546546919949856688134504693, 2.91011669761311660132782406942, 2.94721907897404388683590600807, 3.29552022458622653598223473575, 3.37598525960059443243688909245, 4.14641377712937276509438435189, 4.21677793741455449805911174773, 4.48401696986073467866375957900, 4.50177728076626727311180309991, 5.58039131494802204448754153881, 5.59601156314010914923735264584, 5.60793718174759904250853917699, 5.72469974560839986398772614806, 6.38537998282885303827214316003, 6.49052889545852220656594027118, 6.53907012703381438087869558560, 6.58943830788247338767376565944, 6.87891995944659982199825288385

Graph of the $Z$-function along the critical line