Properties

Label 8-546e4-1.1-c1e4-0-4
Degree $8$
Conductor $88873149456$
Sign $1$
Analytic cond. $361.309$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 4-s − 6·5-s + 4·6-s + 2·7-s + 2·8-s + 9-s + 12·10-s − 11-s − 2·12-s − 2·13-s − 4·14-s + 12·15-s − 4·16-s + 10·17-s − 2·18-s − 3·19-s − 6·20-s − 4·21-s + 2·22-s + 10·23-s − 4·24-s + 11·25-s + 4·26-s + 2·27-s + 2·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 1/2·4-s − 2.68·5-s + 1.63·6-s + 0.755·7-s + 0.707·8-s + 1/3·9-s + 3.79·10-s − 0.301·11-s − 0.577·12-s − 0.554·13-s − 1.06·14-s + 3.09·15-s − 16-s + 2.42·17-s − 0.471·18-s − 0.688·19-s − 1.34·20-s − 0.872·21-s + 0.426·22-s + 2.08·23-s − 0.816·24-s + 11/5·25-s + 0.784·26-s + 0.384·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(361.309\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2122375847\)
\(L(\frac12)\) \(\approx\) \(0.2122375847\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 + T - 17 T^{2} - 4 T^{3} + 192 T^{4} - 4 p T^{5} - 17 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 5 T + 8 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 + 3 T + 7 T^{2} - 108 T^{3} - 528 T^{4} - 108 p T^{5} + 7 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 10 T + 2 p T^{2} - 80 T^{3} + 87 T^{4} - 80 p T^{5} + 2 p^{3} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - T - 28 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 2 T + 46 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + T + 33 T^{2} - 106 T^{3} - 382 T^{4} - 106 p T^{5} + 33 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$$\times$$C_2^2$ \( ( 1 - 21 T + 188 T^{2} - 21 p T^{3} + p^{2} T^{4} )( 1 + 21 T + 188 T^{2} + 21 p T^{3} + p^{2} T^{4} ) \)
43$D_4\times C_2$ \( 1 - 14 T + 78 T^{2} - 448 T^{3} + 3647 T^{4} - 448 p T^{5} + 78 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 3 T + 58 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 16 T + 153 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 18 T + 142 T^{2} + 1152 T^{3} + 10527 T^{4} + 1152 p T^{5} + 142 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
67$D_4\times C_2$ \( 1 - 6 T - 90 T^{2} + 48 T^{3} + 8975 T^{4} + 48 p T^{5} - 90 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 4 T - 55 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 9 T + 162 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 7 T + 166 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 4 T + 102 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 7 T - 103 T^{2} + 182 T^{3} + 10822 T^{4} + 182 p T^{5} - 103 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 8 T - 78 T^{2} - 416 T^{3} + 4547 T^{4} - 416 p T^{5} - 78 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66105301476937064089661115836, −7.62946073692979952448935302284, −7.59052919865805356299634279700, −7.25937245960365133829550218255, −7.23336688417032258737000325406, −6.60013991705357099876328372533, −6.33848361340608420257078706634, −6.23718076521617461231642562774, −5.79539041791953508252543694692, −5.77507233372255184933654097995, −5.08134273399618757730208809428, −4.88948270922628189036482240660, −4.86851453958344796612352960406, −4.68374896571471523754025836180, −4.36404261140080671322979389177, −4.00787513167301698174705292594, −3.55009733553347817523035492660, −3.43418833114470502007861530368, −3.05429821191537438574459869072, −2.91628802504928215060906728393, −2.19526854342959724842261703529, −1.64597133344588705047313029374, −1.23128666803714783207566773468, −0.72578109763899831388137551844, −0.35327922923447364433279661753, 0.35327922923447364433279661753, 0.72578109763899831388137551844, 1.23128666803714783207566773468, 1.64597133344588705047313029374, 2.19526854342959724842261703529, 2.91628802504928215060906728393, 3.05429821191537438574459869072, 3.43418833114470502007861530368, 3.55009733553347817523035492660, 4.00787513167301698174705292594, 4.36404261140080671322979389177, 4.68374896571471523754025836180, 4.86851453958344796612352960406, 4.88948270922628189036482240660, 5.08134273399618757730208809428, 5.77507233372255184933654097995, 5.79539041791953508252543694692, 6.23718076521617461231642562774, 6.33848361340608420257078706634, 6.60013991705357099876328372533, 7.23336688417032258737000325406, 7.25937245960365133829550218255, 7.59052919865805356299634279700, 7.62946073692979952448935302284, 7.66105301476937064089661115836

Graph of the $Z$-function along the critical line