L(s) = 1 | − 6·2-s − 12·3-s + 10·4-s + 72·6-s + 28·7-s − 3·8-s + 90·9-s + 57·11-s − 120·12-s − 43·13-s − 168·14-s + 54·16-s − 99·17-s − 540·18-s − 12·19-s − 336·21-s − 342·22-s − 156·23-s + 36·24-s + 258·26-s − 540·27-s + 280·28-s + 378·29-s − 93·31-s − 240·32-s − 684·33-s + 594·34-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 2.30·3-s + 5/4·4-s + 4.89·6-s + 1.51·7-s − 0.132·8-s + 10/3·9-s + 1.56·11-s − 2.88·12-s − 0.917·13-s − 3.20·14-s + 0.843·16-s − 1.41·17-s − 7.07·18-s − 0.144·19-s − 3.49·21-s − 3.31·22-s − 1.41·23-s + 0.306·24-s + 1.94·26-s − 3.84·27-s + 1.88·28-s + 2.42·29-s − 0.538·31-s − 1.32·32-s − 3.60·33-s + 2.99·34-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
920664. |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 34⋅58⋅74, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)4 |
| 5 | | 1 |
| 7 | C1 | (1−pT)4 |
good | 2 | C2≀C2≀C2 | 1+3pT+13pT2+99T3+149pT4+99p3T5+13p7T6+3p10T7+p12T8 |
| 11 | C2≀C2≀C2 | 1−57T+4001T2−182772T3+7206874T4−182772p3T5+4001p6T6−57p9T7+p12T8 |
| 13 | C2≀C2≀C2 | 1+43T+4464T2+221093T3+13201958T4+221093p3T5+4464p6T6+43p9T7+p12T8 |
| 17 | C2≀C2≀C2 | 1+99T+13790T2+926229T3+90687946T4+926229p3T5+13790p6T6+99p9T7+p12T8 |
| 19 | C2≀C2≀C2 | 1+12T−10212T2+154020T3+95206646T4+154020p3T5−10212p6T6+12p9T7+p12T8 |
| 23 | C2≀C2≀C2 | 1+156T+28082T2+3613896T3+479553835T4+3613896p3T5+28082p6T6+156p9T7+p12T8 |
| 29 | C2≀C2≀C2 | 1−378T+143760T2−1025172pT3+5852097929T4−1025172p4T5+143760p6T6−378p9T7+p12T8 |
| 31 | C2≀C2≀C2 | 1+3pT+16330T2−936891T3+385099458T4−936891p3T5+16330p6T6+3p10T7+p12T8 |
| 37 | C2≀C2≀C2 | 1+81T+107185T2+469746T3+5937897606T4+469746p3T5+107185p6T6+81p9T7+p12T8 |
| 41 | C2≀C2≀C2 | 1+465T+105716T2+566235T3−2050285754T4+566235p3T5+105716p6T6+465p9T7+p12T8 |
| 43 | C2≀C2≀C2 | 1−64T+64662T2+2492176T3+5477627255T4+2492176p3T5+64662p6T6−64p9T7+p12T8 |
| 47 | C2≀C2≀C2 | 1+744T+588276T2+247094976T3+101020317878T4+247094976p3T5+588276p6T6+744p9T7+p12T8 |
| 53 | C2≀C2≀C2 | 1+729T+333446T2+137056347T3+63585804370T4+137056347p3T5+333446p6T6+729p9T7+p12T8 |
| 59 | C2≀C2≀C2 | 1−231T+701280T2−148812447T3+204019205798T4−148812447p3T5+701280p6T6−231p9T7+p12T8 |
| 61 | C2≀C2≀C2 | 1+1353T+1374808T2+931878711T3+511309944510T4+931878711p3T5+1374808p6T6+1353p9T7+p12T8 |
| 67 | C2≀C2≀C2 | 1+1487T+1603371T2+1080212116T3+674138302124T4+1080212116p3T5+1603371p6T6+1487p9T7+p12T8 |
| 71 | C2≀C2≀C2 | 1+1725T+1434819T2+706812600T3+347044577276T4+706812600p3T5+1434819p6T6+1725p9T7+p12T8 |
| 73 | C2≀C2≀C2 | 1+512T+1030980T2+484092568T3+566560915526T4+484092568p3T5+1030980p6T6+512p9T7+p12T8 |
| 79 | C2≀C2≀C2 | 1−1629T+1989837T2−1837769472T3+1504809477470T4−1837769472p3T5+1989837p6T6−1629p9T7+p12T8 |
| 83 | C2≀C2≀C2 | 1+321T+661434T2+144132717T3+79870144034T4+144132717p3T5+661434p6T6+321p9T7+p12T8 |
| 89 | C2≀C2≀C2 | 1+978T+526228T2−159100050T3−360762420714T4−159100050p3T5+526228p6T6+978p9T7+p12T8 |
| 97 | C2≀C2≀C2 | 1+2616T+5183100T2+6945540936T3+7789652954246T4+6945540936p3T5+5183100p6T6+2616p9T7+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.054825066716703602517723721220, −7.55249737699634288167419862459, −7.47969872058425052966787871745, −7.35377986734571396282747206603, −6.73855213728489332593083648611, −6.72342074589394933126000025308, −6.48153370464659226231671852917, −6.33005565602186449911696913972, −5.99013560424541777607107900558, −5.89167459054678131855702884977, −5.40041748608843241685662499846, −5.07595406855566013906505098822, −5.03925054197260239810462418554, −4.61645302411216913350267400647, −4.42183490475584585989613830284, −4.35283915284952835623341398061, −4.08078949704708557499859074312, −3.43651309869142469404583537475, −3.26744080394513471324152703770, −2.65294018966755217437324764249, −2.31094728544811242299797755097, −1.71802940239297374289343109910, −1.37009884543551029158262571366, −1.27583858606173836779918367966, −1.21046594203842898808588622703, 0, 0, 0, 0,
1.21046594203842898808588622703, 1.27583858606173836779918367966, 1.37009884543551029158262571366, 1.71802940239297374289343109910, 2.31094728544811242299797755097, 2.65294018966755217437324764249, 3.26744080394513471324152703770, 3.43651309869142469404583537475, 4.08078949704708557499859074312, 4.35283915284952835623341398061, 4.42183490475584585989613830284, 4.61645302411216913350267400647, 5.03925054197260239810462418554, 5.07595406855566013906505098822, 5.40041748608843241685662499846, 5.89167459054678131855702884977, 5.99013560424541777607107900558, 6.33005565602186449911696913972, 6.48153370464659226231671852917, 6.72342074589394933126000025308, 6.73855213728489332593083648611, 7.35377986734571396282747206603, 7.47969872058425052966787871745, 7.55249737699634288167419862459, 8.054825066716703602517723721220