Properties

Label 8-507e4-1.1-c5e4-0-1
Degree $8$
Conductor $66074188401$
Sign $1$
Analytic cond. $4.37193\times 10^{7}$
Root an. cond. $9.01746$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 36·3-s − 75·4-s + 810·9-s − 2.70e3·12-s + 2.57e3·16-s − 384·17-s − 2.42e3·23-s − 6.62e3·25-s + 1.45e4·27-s − 3.96e3·29-s − 6.07e4·36-s − 4.83e3·43-s + 9.26e4·48-s − 4.91e4·49-s − 1.38e4·51-s − 1.82e3·53-s − 1.00e5·61-s − 4.08e4·64-s + 2.88e4·68-s − 8.72e4·69-s − 2.38e5·75-s − 2.05e5·79-s + 2.29e5·81-s − 1.42e5·87-s + 1.81e5·92-s + 4.96e5·100-s − 1.09e5·101-s + ⋯
L(s)  = 1  + 2.30·3-s − 2.34·4-s + 10/3·9-s − 5.41·12-s + 2.51·16-s − 0.322·17-s − 0.955·23-s − 2.11·25-s + 3.84·27-s − 0.874·29-s − 7.81·36-s − 0.398·43-s + 5.80·48-s − 2.92·49-s − 0.744·51-s − 0.0891·53-s − 3.47·61-s − 1.24·64-s + 0.755·68-s − 2.20·69-s − 4.89·75-s − 3.70·79-s + 35/9·81-s − 2.01·87-s + 2.23·92-s + 4.96·100-s − 1.06·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(4.37193\times 10^{7}\)
Root analytic conductor: \(9.01746\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{4} \cdot 13^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{2} T )^{4} \)
13 \( 1 \)
good2$C_2^2 \wr C_2$ \( 1 + 75 T^{2} + 763 p^{2} T^{4} + 75 p^{10} T^{6} + p^{20} T^{8} \)
5$C_2^2 \wr C_2$ \( 1 + 6624 T^{2} + 1083838 p^{2} T^{4} + 6624 p^{10} T^{6} + p^{20} T^{8} \)
7$C_2^2 \wr C_2$ \( 1 + 49132 T^{2} + 1140403638 T^{4} + 49132 p^{10} T^{6} + p^{20} T^{8} \)
11$C_2^2 \wr C_2$ \( 1 + 617088 T^{2} + 146890430542 T^{4} + 617088 p^{10} T^{6} + p^{20} T^{8} \)
17$D_{4}$ \( ( 1 + 192 T + 2791006 T^{2} + 192 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
19$C_2^2 \wr C_2$ \( 1 + 4292764 T^{2} + 9023685324870 T^{4} + 4292764 p^{10} T^{6} + p^{20} T^{8} \)
23$D_{4}$ \( ( 1 + 1212 T + 3450766 T^{2} + 1212 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 1980 T + 13967182 T^{2} + 1980 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$C_2^2 \wr C_2$ \( 1 + 72558796 T^{2} + 2754768158742 p^{2} T^{4} + 72558796 p^{10} T^{6} + p^{20} T^{8} \)
37$C_2^2 \wr C_2$ \( 1 + 191019364 T^{2} + 17466588618543606 T^{4} + 191019364 p^{10} T^{6} + p^{20} T^{8} \)
41$C_2^2 \wr C_2$ \( 1 + 259347072 T^{2} + 41835734180463454 T^{4} + 259347072 p^{10} T^{6} + p^{20} T^{8} \)
43$D_{4}$ \( ( 1 + 2416 T + 284123046 T^{2} + 2416 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$C_2^2 \wr C_2$ \( 1 + 407420832 T^{2} + 124761975513464638 T^{4} + 407420832 p^{10} T^{6} + p^{20} T^{8} \)
53$D_{4}$ \( ( 1 + 912 T + 836540998 T^{2} + 912 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
59$C_2^2 \wr C_2$ \( 1 + 151308144 T^{2} + 442844399562129262 T^{4} + 151308144 p^{10} T^{6} + p^{20} T^{8} \)
61$D_{4}$ \( ( 1 + 50496 T + 2324330710 T^{2} + 50496 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
67$C_2^2 \wr C_2$ \( 1 + 45114940 T^{2} - 516263867957300538 T^{4} + 45114940 p^{10} T^{6} + p^{20} T^{8} \)
71$C_2^2 \wr C_2$ \( 1 + 6784475376 T^{2} + 18015098428504544062 T^{4} + 6784475376 p^{10} T^{6} + p^{20} T^{8} \)
73$C_2^2 \wr C_2$ \( 1 - 4119671084 T^{2} + 12172896815453134278 T^{4} - 4119671084 p^{10} T^{6} + p^{20} T^{8} \)
79$D_{4}$ \( ( 1 + 102672 T + 7610525470 T^{2} + 102672 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
83$C_2^2 \wr C_2$ \( 1 + 12846419184 T^{2} + 72288762441539676238 T^{4} + 12846419184 p^{10} T^{6} + p^{20} T^{8} \)
89$C_2^2 \wr C_2$ \( 1 - 9461922432 T^{2} + 70529599078905653662 T^{4} - 9461922432 p^{10} T^{6} + p^{20} T^{8} \)
97$C_2^2 \wr C_2$ \( 1 + 23763592180 T^{2} + \)\(28\!\cdots\!94\)\( T^{4} + 23763592180 p^{10} T^{6} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74801649045901333784392801056, −7.44811322610504661819340729846, −7.38163573698105284800302209147, −6.92100516634926891570087550570, −6.55702298762806375092085244157, −6.28894623424670590928748329723, −6.03981277417992113384897207670, −5.86583392115102769707981550020, −5.58032228664999910733436353820, −4.92541861615022497900352815993, −4.83535938370349450955982262206, −4.75433636393628351568335017217, −4.66495139239275351888990792239, −3.86308781691520581035982841596, −3.85120062670764233913457675068, −3.84819342393217094774425732744, −3.76807799652519818791088130831, −3.11567545038728981620952067849, −2.91753477510260959326940960539, −2.54928092323202099861618419884, −2.31417550677066230452095890941, −1.92380914613366125255712280273, −1.40089697489659642680782131982, −1.35362932424085345363593553894, −1.23113936034732143505098508850, 0, 0, 0, 0, 1.23113936034732143505098508850, 1.35362932424085345363593553894, 1.40089697489659642680782131982, 1.92380914613366125255712280273, 2.31417550677066230452095890941, 2.54928092323202099861618419884, 2.91753477510260959326940960539, 3.11567545038728981620952067849, 3.76807799652519818791088130831, 3.84819342393217094774425732744, 3.85120062670764233913457675068, 3.86308781691520581035982841596, 4.66495139239275351888990792239, 4.75433636393628351568335017217, 4.83535938370349450955982262206, 4.92541861615022497900352815993, 5.58032228664999910733436353820, 5.86583392115102769707981550020, 6.03981277417992113384897207670, 6.28894623424670590928748329723, 6.55702298762806375092085244157, 6.92100516634926891570087550570, 7.38163573698105284800302209147, 7.44811322610504661819340729846, 7.74801649045901333784392801056

Graph of the $Z$-function along the critical line