Properties

Label 8-507e4-1.1-c5e4-0-0
Degree $8$
Conductor $66074188401$
Sign $1$
Analytic cond. $4.37193\times 10^{7}$
Root an. cond. $9.01746$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s + 36·3-s + 25·4-s − 24·5-s − 216·6-s − 72·7-s + 120·8-s + 810·9-s + 144·10-s − 1.08e3·11-s + 900·12-s + 432·14-s − 864·15-s − 1.16e3·16-s + 1.17e3·17-s − 4.86e3·18-s − 696·19-s − 600·20-s − 2.59e3·21-s + 6.48e3·22-s + 1.48e3·23-s + 4.32e3·24-s − 5.23e3·25-s + 1.45e4·27-s − 1.80e3·28-s − 9.43e3·29-s + 5.18e3·30-s + ⋯
L(s)  = 1  − 1.06·2-s + 2.30·3-s + 0.781·4-s − 0.429·5-s − 2.44·6-s − 0.555·7-s + 0.662·8-s + 10/3·9-s + 0.455·10-s − 2.69·11-s + 1.80·12-s + 0.589·14-s − 0.991·15-s − 1.13·16-s + 0.986·17-s − 3.53·18-s − 0.442·19-s − 0.335·20-s − 1.28·21-s + 2.85·22-s + 0.586·23-s + 1.53·24-s − 1.67·25-s + 3.84·27-s − 0.433·28-s − 2.08·29-s + 1.05·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(4.37193\times 10^{7}\)
Root analytic conductor: \(9.01746\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 13^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(2.026496732\)
\(L(\frac12)\) \(\approx\) \(2.026496732\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{2} T )^{4} \)
13 \( 1 \)
good2$C_2 \wr S_4$ \( 1 + 3 p T + 11 T^{2} - 51 p^{2} T^{3} - 263 p^{2} T^{4} - 51 p^{7} T^{5} + 11 p^{10} T^{6} + 3 p^{16} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 24 T + 5812 T^{2} + 168 p^{4} T^{3} + 25054038 T^{4} + 168 p^{9} T^{5} + 5812 p^{10} T^{6} + 24 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 72 T + 7548 T^{2} - 1257048 T^{3} - 125996890 T^{4} - 1257048 p^{5} T^{5} + 7548 p^{10} T^{6} + 72 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 1080 T + 67212 p T^{2} + 327808152 T^{3} + 139322607926 T^{4} + 327808152 p^{5} T^{5} + 67212 p^{11} T^{6} + 1080 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1176 T + 3843644 T^{2} - 3519319848 T^{3} + 7355414964550 T^{4} - 3519319848 p^{5} T^{5} + 3843644 p^{10} T^{6} - 1176 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 696 T + 1293420 T^{2} - 3589647432 T^{3} - 1016102311882 T^{4} - 3589647432 p^{5} T^{5} + 1293420 p^{10} T^{6} + 696 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 1488 T + 7357116 T^{2} - 3193017360 T^{3} + 62068638600998 T^{4} - 3193017360 p^{5} T^{5} + 7357116 p^{10} T^{6} - 1488 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 9432 T + 92476044 T^{2} + 536653172808 T^{3} + 2907900757829750 T^{4} + 536653172808 p^{5} T^{5} + 92476044 p^{10} T^{6} + 9432 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 7160 T + 72962652 T^{2} + 348724621144 T^{3} + 2667063945703814 T^{4} + 348724621144 p^{5} T^{5} + 72962652 p^{10} T^{6} + 7160 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 6376 T + 187713612 T^{2} + 1383552321080 T^{3} + 16416003651702422 T^{4} + 1383552321080 p^{5} T^{5} + 187713612 p^{10} T^{6} + 6376 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 5928 T + 322705988 T^{2} - 2510604227832 T^{3} + 47539425640103398 T^{4} - 2510604227832 p^{5} T^{5} + 322705988 p^{10} T^{6} - 5928 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 38848 T + 1110897420 T^{2} - 19952838202304 T^{3} + 288536311792377686 T^{4} - 19952838202304 p^{5} T^{5} + 1110897420 p^{10} T^{6} - 38848 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 3192 T + 614621428 T^{2} + 4222544141688 T^{3} + 173093922952113894 T^{4} + 4222544141688 p^{5} T^{5} + 614621428 p^{10} T^{6} + 3192 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 34392 T + 2039125356 T^{2} - 44523876540552 T^{3} + 1356850329910640534 T^{4} - 44523876540552 p^{5} T^{5} + 2039125356 p^{10} T^{6} - 34392 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 104664 T + 6793563812 T^{2} + 287803731958200 T^{3} + 9062132060148908470 T^{4} + 287803731958200 p^{5} T^{5} + 6793563812 p^{10} T^{6} + 104664 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 27448 T + 2775444684 T^{2} + 62132118243944 T^{3} + 3368486767188276854 T^{4} + 62132118243944 p^{5} T^{5} + 2775444684 p^{10} T^{6} + 27448 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 60376 T + 3322625772 T^{2} + 160549114281560 T^{3} + 106985603987211602 p T^{4} + 160549114281560 p^{5} T^{5} + 3322625772 p^{10} T^{6} + 60376 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 14616 T + 5676433908 T^{2} - 78505453123416 T^{3} + 14326057446016235654 T^{4} - 78505453123416 p^{5} T^{5} + 5676433908 p^{10} T^{6} - 14616 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 47544 T + 5351895900 T^{2} - 104809289297352 T^{3} + 11090693234202363110 T^{4} - 104809289297352 p^{5} T^{5} + 5351895900 p^{10} T^{6} - 47544 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 37152 T + 7922761788 T^{2} + 271930754630304 T^{3} + 32286607365735188294 T^{4} + 271930754630304 p^{5} T^{5} + 7922761788 p^{10} T^{6} + 37152 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 168888 T + 23282540996 T^{2} - 2001497734461912 T^{3} + \)\(14\!\cdots\!66\)\( T^{4} - 2001497734461912 p^{5} T^{5} + 23282540996 p^{10} T^{6} - 168888 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 74424 T + 18577526212 T^{2} + 944499174046248 T^{3} + \)\(14\!\cdots\!42\)\( T^{4} + 944499174046248 p^{5} T^{5} + 18577526212 p^{10} T^{6} + 74424 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 131080 T + 37889238204 T^{2} + 3246663290398136 T^{3} + \)\(49\!\cdots\!38\)\( T^{4} + 3246663290398136 p^{5} T^{5} + 37889238204 p^{10} T^{6} + 131080 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42668528198673100613005776049, −7.12157453564163037869268921412, −6.81092433976071425914788204829, −6.47893007559995205673933638851, −6.00067622846686194085134803703, −5.95613375549500584273768244402, −5.38289690452316442803825044883, −5.35617495532769826199089867784, −5.27403629936094341487900635191, −4.54534035272405710006905791704, −4.33850578683732648941238658144, −4.12993875096193396378630129707, −4.07739738626541792570497707731, −3.53521832198436588059554205481, −3.21777997789723437150992835197, −2.98065340780318104671200491955, −2.90226394830184964687081713384, −2.46211865483351508900090471828, −2.26230913842402104540177611783, −1.81784937047001494459687938914, −1.61933082065206996576498496944, −1.59597546194039680229241571227, −0.75271132272987828286896254660, −0.58774510295502457831651818402, −0.16888188156053218748995231355, 0.16888188156053218748995231355, 0.58774510295502457831651818402, 0.75271132272987828286896254660, 1.59597546194039680229241571227, 1.61933082065206996576498496944, 1.81784937047001494459687938914, 2.26230913842402104540177611783, 2.46211865483351508900090471828, 2.90226394830184964687081713384, 2.98065340780318104671200491955, 3.21777997789723437150992835197, 3.53521832198436588059554205481, 4.07739738626541792570497707731, 4.12993875096193396378630129707, 4.33850578683732648941238658144, 4.54534035272405710006905791704, 5.27403629936094341487900635191, 5.35617495532769826199089867784, 5.38289690452316442803825044883, 5.95613375549500584273768244402, 6.00067622846686194085134803703, 6.47893007559995205673933638851, 6.81092433976071425914788204829, 7.12157453564163037869268921412, 7.42668528198673100613005776049

Graph of the $Z$-function along the critical line