Properties

Label 8-507e4-1.1-c2e4-0-0
Degree $8$
Conductor $66074188401$
Sign $1$
Analytic cond. $36422.6$
Root an. cond. $3.71681$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 10·4-s − 15·9-s − 20·12-s + 43·16-s + 46·25-s + 50·27-s − 150·36-s − 140·43-s − 86·48-s + 14·49-s + 280·61-s + 20·64-s − 92·75-s − 200·79-s + 140·81-s + 460·100-s + 500·108-s + 460·121-s + 127-s + 280·129-s + 131-s + 137-s + 139-s − 645·144-s − 28·147-s + 149-s + ⋯
L(s)  = 1  − 2/3·3-s + 5/2·4-s − 5/3·9-s − 5/3·12-s + 2.68·16-s + 1.83·25-s + 1.85·27-s − 4.16·36-s − 3.25·43-s − 1.79·48-s + 2/7·49-s + 4.59·61-s + 5/16·64-s − 1.22·75-s − 2.53·79-s + 1.72·81-s + 23/5·100-s + 4.62·108-s + 3.80·121-s + 0.00787·127-s + 2.17·129-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 4.47·144-s − 0.190·147-s + 0.00671·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(36422.6\)
Root analytic conductor: \(3.71681\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 13^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.586111389\)
\(L(\frac12)\) \(\approx\) \(3.586111389\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
13 \( 1 \)
good2$C_2^2$ \( ( 1 - 5 T^{2} + p^{4} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 23 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - p T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 230 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 29 T + p^{2} T^{2} )^{2}( 1 + 29 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( ( 1 + 302 T^{2} + p^{4} T^{4} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
29$C_2^2$ \( ( 1 - 422 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 1502 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 2633 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 3350 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 35 T + p^{2} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 1535 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 578 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6530 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{4} \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 3455 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 4462 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 50 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 2650 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 4310 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 18398 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30718738321887381547447337318, −7.27716898440537763414109432971, −7.21488432191410524703080186429, −6.82851408310983489560099241896, −6.70434769752232612602922111900, −6.45394541118912327145618877022, −6.35873592376760843750774166921, −5.92201156043958000081687636866, −5.79716698718108515766140041775, −5.52987907559908338322513476676, −5.23649576925270460072619655327, −5.02305846814481016646642361489, −4.71781964722330824873132535524, −4.52971770141197356109676394266, −3.81964372990801140886627928387, −3.62085620410495809970313397218, −3.39401653124591545206178056260, −2.81321770122396465563980074123, −2.79575816776815312544250655246, −2.60553141462978124827814970838, −2.20036027322627868719359080650, −1.72018070913872911810557135910, −1.49676342980095527406041375792, −0.834054630445934882341645898300, −0.36840503127744013091015699042, 0.36840503127744013091015699042, 0.834054630445934882341645898300, 1.49676342980095527406041375792, 1.72018070913872911810557135910, 2.20036027322627868719359080650, 2.60553141462978124827814970838, 2.79575816776815312544250655246, 2.81321770122396465563980074123, 3.39401653124591545206178056260, 3.62085620410495809970313397218, 3.81964372990801140886627928387, 4.52971770141197356109676394266, 4.71781964722330824873132535524, 5.02305846814481016646642361489, 5.23649576925270460072619655327, 5.52987907559908338322513476676, 5.79716698718108515766140041775, 5.92201156043958000081687636866, 6.35873592376760843750774166921, 6.45394541118912327145618877022, 6.70434769752232612602922111900, 6.82851408310983489560099241896, 7.21488432191410524703080186429, 7.27716898440537763414109432971, 7.30718738321887381547447337318

Graph of the $Z$-function along the critical line