Properties

Label 8-48e8-1.1-c2e4-0-9
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 56·17-s − 4·25-s − 56·41-s − 92·49-s + 200·73-s + 248·89-s − 584·97-s − 520·113-s + 388·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 292·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 3.29·17-s − 0.159·25-s − 1.36·41-s − 1.87·49-s + 2.73·73-s + 2.78·89-s − 6.02·97-s − 4.60·113-s + 3.20·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4031463865\)
\(L(\frac12)\) \(\approx\) \(0.4031463865\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 46 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 194 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 146 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 478 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 482 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 482 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1778 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 1970 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 3650 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 766 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 1730 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 4610 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 4370 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 866 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 9506 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 12338 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 13346 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 62 T + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 146 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.18506570500659644175479777943, −6.05745179962403504622492769541, −6.02172162805812740290092714039, −5.32018564470801238069529665326, −5.30402836287317077304614744900, −5.23722289348336981368932175379, −4.95595665870526219580467142972, −4.81446907129083433588258067280, −4.42907541494785007215318002647, −4.27214197518920437943810805142, −4.18874188670959231892465634100, −3.77288581726478830100531620783, −3.60770594327316661978364120785, −3.57355383196256195067379579185, −3.09619302499364497639361423965, −2.71775742474150711118746286608, −2.56109923961591158026576071220, −2.43850728468916313790295254397, −2.21141932682903369397591332452, −1.71213317403570871548063137943, −1.57256986404669006532199694205, −1.41442862606968520019578739808, −0.872148527331863147199875687632, −0.37922111217549063644478913260, −0.11631814328452418651769597117, 0.11631814328452418651769597117, 0.37922111217549063644478913260, 0.872148527331863147199875687632, 1.41442862606968520019578739808, 1.57256986404669006532199694205, 1.71213317403570871548063137943, 2.21141932682903369397591332452, 2.43850728468916313790295254397, 2.56109923961591158026576071220, 2.71775742474150711118746286608, 3.09619302499364497639361423965, 3.57355383196256195067379579185, 3.60770594327316661978364120785, 3.77288581726478830100531620783, 4.18874188670959231892465634100, 4.27214197518920437943810805142, 4.42907541494785007215318002647, 4.81446907129083433588258067280, 4.95595665870526219580467142972, 5.23722289348336981368932175379, 5.30402836287317077304614744900, 5.32018564470801238069529665326, 6.02172162805812740290092714039, 6.05745179962403504622492769541, 6.18506570500659644175479777943

Graph of the $Z$-function along the critical line