Properties

Label 8-48e8-1.1-c2e4-0-30
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·19-s + 88·25-s + 224·43-s − 172·49-s + 112·67-s − 80·73-s − 32·97-s + 340·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 460·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 0.842·19-s + 3.51·25-s + 5.20·43-s − 3.51·49-s + 1.67·67-s − 1.09·73-s − 0.329·97-s + 2.80·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 2.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(9.791558587\)
\(L(\frac12)\) \(\approx\) \(9.791558587\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 44 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 86 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 170 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 230 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 416 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 118 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 484 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 470 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 1970 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 2480 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 56 T + p^{2} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 362 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 572 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 3406 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 2642 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 28 T + p^{2} T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 7178 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 20 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 7190 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 7946 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 12800 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.25213029851470840540613577004, −6.06021007049268191110787673829, −5.78569694249285007533021258339, −5.50748534319640712521198537438, −5.50390331565036000013617277591, −5.13469269158588508528941950604, −4.82032392940589096702291320367, −4.70247615959883990236831686344, −4.60185322990476760025963789374, −4.33900252176644340000439463241, −4.12414046800898171610769724313, −3.82362464643701532026650416746, −3.72042111279777267969323733992, −3.24398810914439047941812494026, −2.97509715014874881185322111811, −2.86606095734531973228216779945, −2.79415156934707671431108711426, −2.51154941481793096695235016888, −1.93017565991734420888557309383, −1.82087483102853739140150284997, −1.70885930161060218508124616812, −1.08994152759511784126989150370, −0.810542913683926016881312822963, −0.53661356136191090791361848151, −0.51612905327263631671059588161, 0.51612905327263631671059588161, 0.53661356136191090791361848151, 0.810542913683926016881312822963, 1.08994152759511784126989150370, 1.70885930161060218508124616812, 1.82087483102853739140150284997, 1.93017565991734420888557309383, 2.51154941481793096695235016888, 2.79415156934707671431108711426, 2.86606095734531973228216779945, 2.97509715014874881185322111811, 3.24398810914439047941812494026, 3.72042111279777267969323733992, 3.82362464643701532026650416746, 4.12414046800898171610769724313, 4.33900252176644340000439463241, 4.60185322990476760025963789374, 4.70247615959883990236831686344, 4.82032392940589096702291320367, 5.13469269158588508528941950604, 5.50390331565036000013617277591, 5.50748534319640712521198537438, 5.78569694249285007533021258339, 6.06021007049268191110787673829, 6.25213029851470840540613577004

Graph of the $Z$-function along the critical line