Properties

Label 8-48e8-1.1-c2e4-0-2
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·7-s − 96·25-s − 160·31-s + 444·49-s − 384·73-s + 416·79-s − 320·97-s − 288·103-s − 228·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 548·169-s + 173-s − 3.07e3·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 32/7·7-s − 3.83·25-s − 5.16·31-s + 9.06·49-s − 5.26·73-s + 5.26·79-s − 3.29·97-s − 2.79·103-s − 1.88·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.24·169-s + 0.00578·173-s − 17.5·175-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.01023455266\)
\(L(\frac12)\) \(\approx\) \(0.01023455266\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 48 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{4} \)
11$C_2^2$ \( ( 1 + 114 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 274 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 416 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 302 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 94 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 240 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2062 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 1056 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 3442 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 4290 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 4560 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 6450 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 4526 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 2578 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 3810 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 96 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 - 104 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 3410 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 9792 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 80 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.84999607375970083617114219141, −5.80984837200876417176251954647, −5.75943644100450702170109709331, −5.55390471695389189779737610933, −5.38736126733883013672116131371, −5.24078093828104255793175415836, −4.97470192043978893374893742831, −4.62574532944891604562867131102, −4.59114699715124120187282819571, −4.35916931871173015658490982558, −4.13201178127763089585665144340, −3.92405953509804139886141578797, −3.70223185631707715247368932231, −3.42829475589692927911913334673, −3.35517988414858821496958386321, −2.72369529685937526103488588961, −2.41834308581735007416793662188, −2.16242083824564045951643223077, −1.92919329826591436508112531798, −1.72671239266931937375183284990, −1.65981445682039772320372174541, −1.42679901976412576481370252411, −1.25945247615183311690766855539, −0.52731197680205007433539628504, −0.01068664892415829888948771175, 0.01068664892415829888948771175, 0.52731197680205007433539628504, 1.25945247615183311690766855539, 1.42679901976412576481370252411, 1.65981445682039772320372174541, 1.72671239266931937375183284990, 1.92919329826591436508112531798, 2.16242083824564045951643223077, 2.41834308581735007416793662188, 2.72369529685937526103488588961, 3.35517988414858821496958386321, 3.42829475589692927911913334673, 3.70223185631707715247368932231, 3.92405953509804139886141578797, 4.13201178127763089585665144340, 4.35916931871173015658490982558, 4.59114699715124120187282819571, 4.62574532944891604562867131102, 4.97470192043978893374893742831, 5.24078093828104255793175415836, 5.38736126733883013672116131371, 5.55390471695389189779737610933, 5.75943644100450702170109709331, 5.80984837200876417176251954647, 5.84999607375970083617114219141

Graph of the $Z$-function along the critical line