Properties

Label 8-48e8-1.1-c2e4-0-14
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $1.55335\times 10^{7}$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·19-s + 88·25-s − 224·43-s − 172·49-s − 112·67-s − 80·73-s − 32·97-s + 340·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 460·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 0.842·19-s + 3.51·25-s − 5.20·43-s − 3.51·49-s − 1.67·67-s − 1.09·73-s − 0.329·97-s + 2.80·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 2.72·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.55335\times 10^{7}\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.498710990\)
\(L(\frac12)\) \(\approx\) \(1.498710990\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 44 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 86 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 170 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 230 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 416 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 118 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 484 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 470 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 1970 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 2480 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 56 T + p^{2} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 362 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 572 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 3406 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 2642 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2$ \( ( 1 + 28 T + p^{2} T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 7178 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 20 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 7190 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 7946 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 12800 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.19066372536253067241377633689, −6.08938886927974881332495745903, −5.91894020242106430473074646766, −5.38421577444179141327609495358, −5.25849218435432718568825888695, −5.21391203758571193131283406822, −4.85798600739912092335760058433, −4.69667679687453910184354155086, −4.63086595128369122463020202901, −4.60532605393144891630334899004, −4.10034167787061942483635509115, −3.49606872515066236519825376901, −3.47550252188685458212256777944, −3.41044219146073083077993268584, −3.34607045172856210343207018198, −2.85790340954569303426290853647, −2.73852871166277990876506453901, −2.37352115358092387477042796130, −2.20654581668163893283750854843, −1.59756060849291164150617677584, −1.37387186671812639405674641663, −1.27775596972124152608831929878, −1.23671756793364779417381779923, −0.37618521451779055772731825940, −0.20548878055316926007119508575, 0.20548878055316926007119508575, 0.37618521451779055772731825940, 1.23671756793364779417381779923, 1.27775596972124152608831929878, 1.37387186671812639405674641663, 1.59756060849291164150617677584, 2.20654581668163893283750854843, 2.37352115358092387477042796130, 2.73852871166277990876506453901, 2.85790340954569303426290853647, 3.34607045172856210343207018198, 3.41044219146073083077993268584, 3.47550252188685458212256777944, 3.49606872515066236519825376901, 4.10034167787061942483635509115, 4.60532605393144891630334899004, 4.63086595128369122463020202901, 4.69667679687453910184354155086, 4.85798600739912092335760058433, 5.21391203758571193131283406822, 5.25849218435432718568825888695, 5.38421577444179141327609495358, 5.91894020242106430473074646766, 6.08938886927974881332495745903, 6.19066372536253067241377633689

Graph of the $Z$-function along the critical line