Properties

Label 8-48e8-1.1-c1e4-0-4
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $114561.$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·13-s − 24·17-s + 24·29-s − 20·37-s + 24·49-s − 24·53-s − 20·61-s − 48·97-s − 24·101-s + 52·109-s − 24·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 1.10·13-s − 5.82·17-s + 4.45·29-s − 3.28·37-s + 24/7·49-s − 3.29·53-s − 2.56·61-s − 4.87·97-s − 2.38·101-s + 4.98·109-s − 2.25·113-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(114561.\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6784035427\)
\(L(\frac12)\) \(\approx\) \(0.6784035427\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 12 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
19$C_2^3$ \( 1 - 718 T^{4} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 60 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 1198 T^{4} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 4946 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 156 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.38600644488437615369102147000, −6.30503206418632232052932633575, −6.23288245415410835256997254398, −5.78839142806257455153022381807, −5.55298413978185410955867840963, −5.17469720094715453437008499386, −5.13905627158435542365683695826, −4.70685389115854170088387727069, −4.64499638070020071096314864984, −4.51067837790152683634900013540, −4.49445709084411454844533274266, −4.16797541630181040620123468212, −3.95841575990851241331003382181, −3.53393521309294082321785235390, −3.37629555557710574972288974723, −2.88665714932374340011344779327, −2.62008963743873140182542144088, −2.58104023488496124966257506820, −2.53127196562431032126093725849, −2.07623991382578500499876583397, −1.82985133504901376573277304707, −1.37926782333916385170133901781, −1.32019245594204322139546197352, −0.36781669003870647882598076445, −0.25745859414512768852423462568, 0.25745859414512768852423462568, 0.36781669003870647882598076445, 1.32019245594204322139546197352, 1.37926782333916385170133901781, 1.82985133504901376573277304707, 2.07623991382578500499876583397, 2.53127196562431032126093725849, 2.58104023488496124966257506820, 2.62008963743873140182542144088, 2.88665714932374340011344779327, 3.37629555557710574972288974723, 3.53393521309294082321785235390, 3.95841575990851241331003382181, 4.16797541630181040620123468212, 4.49445709084411454844533274266, 4.51067837790152683634900013540, 4.64499638070020071096314864984, 4.70685389115854170088387727069, 5.13905627158435542365683695826, 5.17469720094715453437008499386, 5.55298413978185410955867840963, 5.78839142806257455153022381807, 6.23288245415410835256997254398, 6.30503206418632232052932633575, 6.38600644488437615369102147000

Graph of the $Z$-function along the critical line