Properties

Label 8-48e8-1.1-c1e4-0-0
Degree $8$
Conductor $2.818\times 10^{13}$
Sign $1$
Analytic cond. $114561.$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 16·23-s + 24·25-s − 8·29-s − 16·43-s + 16·47-s + 4·49-s + 8·53-s − 48·67-s − 16·71-s − 16·73-s + 32·97-s − 8·101-s − 128·115-s + 28·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + ⋯
L(s)  = 1  + 3.57·5-s − 3.33·23-s + 24/5·25-s − 1.48·29-s − 2.43·43-s + 2.33·47-s + 4/7·49-s + 1.09·53-s − 5.86·67-s − 1.89·71-s − 1.87·73-s + 3.24·97-s − 0.796·101-s − 11.9·115-s + 2.54·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(114561.\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.224379880\)
\(L(\frac12)\) \(\approx\) \(1.224379880\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( ( 1 - 4 T + 12 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
7$C_4\times C_2$ \( 1 - 4 T^{2} - 26 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 32 T^{2} + 706 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 4 T + 60 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 36 T^{2} + 1094 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 76 T^{2} + 3670 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 128 T^{2} + 7330 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 8 T + 38 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 4 T + 60 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 44 T^{2} - 746 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 172 T^{2} + 14326 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
71$D_{4}$ \( ( 1 + 8 T + 86 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
79$C_4\times C_2$ \( 1 - 164 T^{2} + 18054 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 188 T^{2} + 20566 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 192 T^{2} + 20450 T^{4} - 192 p^{2} T^{6} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 16 T + 226 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.21334430589839571823284236589, −6.02824321065049013239422844552, −5.91608311452727762746857227518, −5.82469466625548586968915220488, −5.74321423432464136038343047358, −5.60954251541041735328909275286, −5.32822658451853229592401122351, −4.95590953664081951571103748715, −4.73052820495714928541401268023, −4.61679690207275194865865715882, −4.19161724723050316145218186929, −4.10046254065773747266944469205, −3.83748474723901262805046475903, −3.68172223563678435722019297893, −3.09378886361479788636458209660, −3.05166164318882793353193493911, −2.78637633829103657988950457794, −2.32251120395997807349617784552, −2.31309741102351129722389550244, −1.88315417137459952637792387924, −1.70625626132795416293482729059, −1.61123607492311535459949866335, −1.60036584838745865650294246436, −0.826585340299214730326717437238, −0.14521879525570596710742023155, 0.14521879525570596710742023155, 0.826585340299214730326717437238, 1.60036584838745865650294246436, 1.61123607492311535459949866335, 1.70625626132795416293482729059, 1.88315417137459952637792387924, 2.31309741102351129722389550244, 2.32251120395997807349617784552, 2.78637633829103657988950457794, 3.05166164318882793353193493911, 3.09378886361479788636458209660, 3.68172223563678435722019297893, 3.83748474723901262805046475903, 4.10046254065773747266944469205, 4.19161724723050316145218186929, 4.61679690207275194865865715882, 4.73052820495714928541401268023, 4.95590953664081951571103748715, 5.32822658451853229592401122351, 5.60954251541041735328909275286, 5.74321423432464136038343047358, 5.82469466625548586968915220488, 5.91608311452727762746857227518, 6.02824321065049013239422844552, 6.21334430589839571823284236589

Graph of the $Z$-function along the critical line