Properties

Label 8-475e4-1.1-c1e4-0-2
Degree $8$
Conductor $50906640625$
Sign $1$
Analytic cond. $206.958$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 2·9-s + 12·11-s + 4·16-s + 14·19-s − 6·29-s − 28·31-s + 8·36-s + 12·41-s − 48·44-s − 4·49-s − 30·59-s − 10·61-s + 16·64-s + 6·71-s − 56·76-s + 10·79-s + 9·81-s − 30·89-s − 24·99-s − 30·101-s + 22·109-s + 24·116-s + 46·121-s + 112·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2·4-s − 2/3·9-s + 3.61·11-s + 16-s + 3.21·19-s − 1.11·29-s − 5.02·31-s + 4/3·36-s + 1.87·41-s − 7.23·44-s − 4/7·49-s − 3.90·59-s − 1.28·61-s + 2·64-s + 0.712·71-s − 6.42·76-s + 1.12·79-s + 81-s − 3.17·89-s − 2.41·99-s − 2.98·101-s + 2.10·109-s + 2.22·116-s + 4.18·121-s + 10.0·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(206.958\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.8203643045\)
\(L(\frac12)\) \(\approx\) \(0.8203643045\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
3$C_2^3$ \( 1 + 2 T^{2} - 5 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )( 1 + 23 T^{2} + p^{2} T^{4} ) \)
17$C_2^3$ \( 1 - 2 T^{2} - 285 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 70 T^{2} + 3051 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 58 T^{2} + 1155 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 15 T + 166 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 130 T^{2} + 12411 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 3 T - 62 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^3$ \( 1 + 82 T^{2} + 1395 T^{4} + 82 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 5 T - 54 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 15 T + 136 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 227 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.030173661203425597557555437492, −7.77464208771795972208962237532, −7.47027233913951022615622415120, −7.32686579733638003288005296332, −6.81146538933171466891201736027, −6.78498553458026951830260153804, −6.76772306089893675247472780653, −5.96004480878040017705807850892, −5.86974380884192101539714078010, −5.68195054417327968144985517669, −5.65087247543136885852418416393, −4.94418267041729288861672119069, −4.93651899916904404292786676175, −4.81245366832967215775226340318, −4.14581044886372423467508100544, −3.88816202389305248278849273958, −3.88766642861698776903591404347, −3.73746216017072337283333209722, −3.18598208237196360298998038068, −3.14190017737766234071291479024, −2.46650914425931066872841915969, −1.68963123435614751517504654443, −1.51400027269807577686427754073, −1.26052134014176786655065684227, −0.35725981704408066408398955194, 0.35725981704408066408398955194, 1.26052134014176786655065684227, 1.51400027269807577686427754073, 1.68963123435614751517504654443, 2.46650914425931066872841915969, 3.14190017737766234071291479024, 3.18598208237196360298998038068, 3.73746216017072337283333209722, 3.88766642861698776903591404347, 3.88816202389305248278849273958, 4.14581044886372423467508100544, 4.81245366832967215775226340318, 4.93651899916904404292786676175, 4.94418267041729288861672119069, 5.65087247543136885852418416393, 5.68195054417327968144985517669, 5.86974380884192101539714078010, 5.96004480878040017705807850892, 6.76772306089893675247472780653, 6.78498553458026951830260153804, 6.81146538933171466891201736027, 7.32686579733638003288005296332, 7.47027233913951022615622415120, 7.77464208771795972208962237532, 8.030173661203425597557555437492

Graph of the $Z$-function along the critical line