Properties

Label 8-462e4-1.1-c1e4-0-6
Degree $8$
Conductor $45558341136$
Sign $1$
Analytic cond. $185.215$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·7-s + 6·9-s + 3·16-s − 20·25-s − 16·28-s − 12·36-s − 8·37-s − 8·43-s + 34·49-s + 48·63-s − 4·64-s − 16·67-s + 32·79-s + 27·81-s + 40·100-s − 80·109-s + 24·112-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 18·144-s + 16·148-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s + 3.02·7-s + 2·9-s + 3/4·16-s − 4·25-s − 3.02·28-s − 2·36-s − 1.31·37-s − 1.21·43-s + 34/7·49-s + 6.04·63-s − 1/2·64-s − 1.95·67-s + 3.60·79-s + 3·81-s + 4·100-s − 7.66·109-s + 2.26·112-s − 0.181·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3/2·144-s + 1.31·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(185.215\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.765566032\)
\(L(\frac12)\) \(\approx\) \(2.765566032\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 106 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.987607169942069840158269168813, −7.81279471412227562108202160655, −7.61121117835497331651037045802, −7.58303265437170784155467966210, −6.94540834172087397037375155189, −6.86438870366687228934610490361, −6.71938939171693366053646255990, −6.18911421087111104326905932366, −5.85855308463100640542285659787, −5.64691619956599129925532694512, −5.38422497104102263906327643677, −5.07782702454631711925128064231, −4.93325801611994502481187269447, −4.69999864798053547169839904242, −4.37275262194764698851335905721, −4.04976401376089661775401427431, −3.91331429197674510898519512920, −3.84414947246844531381387588615, −3.33237280938223814320612671187, −2.71508890791417022891425312850, −2.17769200074351655647976243777, −1.72227542664204167521647047351, −1.61092397060891597455556310135, −1.58643496396095380548099275407, −0.59658248094432583186866255363, 0.59658248094432583186866255363, 1.58643496396095380548099275407, 1.61092397060891597455556310135, 1.72227542664204167521647047351, 2.17769200074351655647976243777, 2.71508890791417022891425312850, 3.33237280938223814320612671187, 3.84414947246844531381387588615, 3.91331429197674510898519512920, 4.04976401376089661775401427431, 4.37275262194764698851335905721, 4.69999864798053547169839904242, 4.93325801611994502481187269447, 5.07782702454631711925128064231, 5.38422497104102263906327643677, 5.64691619956599129925532694512, 5.85855308463100640542285659787, 6.18911421087111104326905932366, 6.71938939171693366053646255990, 6.86438870366687228934610490361, 6.94540834172087397037375155189, 7.58303265437170784155467966210, 7.61121117835497331651037045802, 7.81279471412227562108202160655, 7.987607169942069840158269168813

Graph of the $Z$-function along the critical line