Properties

Label 8-45e4-1.1-c1e4-0-0
Degree $8$
Conductor $4100625$
Sign $1$
Analytic cond. $0.0166708$
Root an. cond. $0.599438$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 4·13-s − 16-s + 8·25-s − 16·31-s + 4·37-s − 32·43-s + 32·49-s + 32·61-s + 16·67-s + 4·73-s − 32·91-s − 44·97-s + 40·103-s + 8·112-s + 28·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + ⋯
L(s)  = 1  − 3.02·7-s + 1.10·13-s − 1/4·16-s + 8/5·25-s − 2.87·31-s + 0.657·37-s − 4.87·43-s + 32/7·49-s + 4.09·61-s + 1.95·67-s + 0.468·73-s − 3.35·91-s − 4.46·97-s + 3.94·103-s + 0.755·112-s + 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(4100625\)    =    \(3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.0166708\)
Root analytic conductor: \(0.599438\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 4100625,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3550379699\)
\(L(\frac12)\) \(\approx\) \(0.3550379699\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
good2$C_2^3$ \( 1 + T^{4} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^3$ \( 1 - 254 T^{4} + p^{4} T^{8} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 80 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 16 T + 128 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 3518 T^{4} + p^{4} T^{8} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )( 1 + 56 T^{2} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 8722 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 22 T + 242 T^{2} + 22 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16949045852122741856206588635, −11.39070334637959316061896944773, −11.32065327001559831372721487565, −11.07648150369747908571594140616, −10.73402037157714484917951818189, −9.993211947347321831766557155915, −9.985583919322433016490765967424, −9.813601344157596459911875113709, −9.523530201797702459658885758880, −8.989915349608132040349712194177, −8.674279076147765457799089192129, −8.388180912004417505596354636959, −8.200621657208690564393827562023, −7.13559581725033654267931037680, −7.09039865126819512771646727198, −6.76997249157825406892103851238, −6.56961946982146046531103976405, −6.05555100337708750065849810943, −5.61024030463355534518954703534, −5.26059532998057285416782806393, −4.62890793123549973374705059312, −3.66957350149866266741830980981, −3.42056620703233254502636074303, −3.37217461998631009762624239828, −2.25947599794642124177219078867, 2.25947599794642124177219078867, 3.37217461998631009762624239828, 3.42056620703233254502636074303, 3.66957350149866266741830980981, 4.62890793123549973374705059312, 5.26059532998057285416782806393, 5.61024030463355534518954703534, 6.05555100337708750065849810943, 6.56961946982146046531103976405, 6.76997249157825406892103851238, 7.09039865126819512771646727198, 7.13559581725033654267931037680, 8.200621657208690564393827562023, 8.388180912004417505596354636959, 8.674279076147765457799089192129, 8.989915349608132040349712194177, 9.523530201797702459658885758880, 9.813601344157596459911875113709, 9.985583919322433016490765967424, 9.993211947347321831766557155915, 10.73402037157714484917951818189, 11.07648150369747908571594140616, 11.32065327001559831372721487565, 11.39070334637959316061896944773, 12.16949045852122741856206588635

Graph of the $Z$-function along the critical line