L(s) = 1 | + 3·2-s − 3-s + 6·4-s − 2·5-s − 3·6-s + 10·8-s − 6·10-s − 11-s − 6·12-s − 13-s + 2·15-s + 15·16-s − 12·20-s − 3·22-s − 10·24-s + 25-s − 3·26-s + 6·30-s + 22·32-s + 33-s + 39-s − 20·40-s − 2·41-s − 2·43-s − 6·44-s − 2·47-s − 15·48-s + ⋯ |
L(s) = 1 | + 3·2-s − 3-s + 6·4-s − 2·5-s − 3·6-s + 10·8-s − 6·10-s − 11-s − 6·12-s − 13-s + 2·15-s + 15·16-s − 12·20-s − 3·22-s − 10·24-s + 25-s − 3·26-s + 6·30-s + 22·32-s + 33-s + 39-s − 20·40-s − 2·41-s − 2·43-s − 6·44-s − 2·47-s − 15·48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 11^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 11^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.547915163\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.547915163\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_4$ | \( 1 + T + T^{2} + T^{3} + T^{4} \) |
| 11 | $C_4$ | \( 1 + T + T^{2} + T^{3} + T^{4} \) |
| 13 | $C_4$ | \( 1 + T + T^{2} + T^{3} + T^{4} \) |
good | 2 | $C_1$$\times$$C_4$ | \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 5 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 7 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 17 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 19 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 23 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 29 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 31 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 37 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 41 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 43 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 47 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 53 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 59 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 61 | $C_1$$\times$$C_4$ | \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 67 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 71 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 73 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 79 | $C_1$$\times$$C_4$ | \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
| 83 | $C_4$ | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 89 | $C_1$ | \( ( 1 - T )^{8} \) |
| 97 | $C_4$$\times$$C_4$ | \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.040127292498926733022239963097, −7.75808725216106026852526261124, −7.64481445688899107174014304403, −7.54582421722621227070330404234, −7.38570062039650306826004057530, −6.88297696684549833608361133753, −6.65313038405446641811858961413, −6.45505229696462178884846594522, −6.29271951071475403497349154053, −6.03462950567384111738172190494, −5.81474420226351671011310507734, −5.12491469255034135623183916362, −5.11629181579823547423922002679, −4.98623120538750706106171505842, −4.91429579640511628840861985634, −4.44456152672402843404268225822, −4.40620994771257051691464826572, −3.58722485375291194822162730118, −3.53248881238974829340002511082, −3.42983081131269022521373024226, −3.36516045675703410611326529525, −2.53536426066171617188298728752, −2.38355047805118523514237716335, −1.99052986627873227732121112811, −1.38013621677416743760713506671,
1.38013621677416743760713506671, 1.99052986627873227732121112811, 2.38355047805118523514237716335, 2.53536426066171617188298728752, 3.36516045675703410611326529525, 3.42983081131269022521373024226, 3.53248881238974829340002511082, 3.58722485375291194822162730118, 4.40620994771257051691464826572, 4.44456152672402843404268225822, 4.91429579640511628840861985634, 4.98623120538750706106171505842, 5.11629181579823547423922002679, 5.12491469255034135623183916362, 5.81474420226351671011310507734, 6.03462950567384111738172190494, 6.29271951071475403497349154053, 6.45505229696462178884846594522, 6.65313038405446641811858961413, 6.88297696684549833608361133753, 7.38570062039650306826004057530, 7.54582421722621227070330404234, 7.64481445688899107174014304403, 7.75808725216106026852526261124, 8.040127292498926733022239963097