Properties

Label 8-429e4-1.1-c0e4-0-0
Degree $8$
Conductor $33871089681$
Sign $1$
Analytic cond. $0.00210115$
Root an. cond. $0.462708$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3-s + 6·4-s + 2·5-s + 3·6-s − 10·8-s − 6·10-s + 11-s − 6·12-s − 13-s − 2·15-s + 15·16-s + 12·20-s − 3·22-s + 10·24-s + 25-s + 3·26-s + 6·30-s − 22·32-s − 33-s + 39-s − 20·40-s + 2·41-s − 2·43-s + 6·44-s + 2·47-s − 15·48-s + ⋯
L(s)  = 1  − 3·2-s − 3-s + 6·4-s + 2·5-s + 3·6-s − 10·8-s − 6·10-s + 11-s − 6·12-s − 13-s − 2·15-s + 15·16-s + 12·20-s − 3·22-s + 10·24-s + 25-s + 3·26-s + 6·30-s − 22·32-s − 33-s + 39-s − 20·40-s + 2·41-s − 2·43-s + 6·44-s + 2·47-s − 15·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 11^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 11^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 11^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.00210115\)
Root analytic conductor: \(0.462708\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{429} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 11^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1387495708\)
\(L(\frac12)\) \(\approx\) \(0.1387495708\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
11$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
13$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
good2$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
5$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
7$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
31$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
41$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
43$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
47$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
61$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
71$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
73$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
79$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
89$C_1$ \( ( 1 + T )^{8} \)
97$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.460915175321761235443975782793, −8.267743014963939036285783666670, −7.80364615787510018936144533052, −7.73551708271388336413552364642, −7.20908087491782886748791381401, −7.20877837705509464941076740476, −6.88690813531367525138184837542, −6.65782931712861500635309174840, −6.41294804193249137275589038306, −6.25518012263535103592175532361, −6.07804249518703855234572348331, −5.54001912774411378084669632374, −5.43197034432738427027019327933, −5.34198176815464359448850852181, −5.27858051588762843407143305543, −4.42425776941067545086850175368, −3.97555379983719071504035548865, −3.59862104190831343971752432541, −3.40355059272266370336791755239, −2.73249382940162996800094119073, −2.27925826571073484171743575601, −2.18858965324182768959442761440, −2.16217725319526669289692058913, −1.27280001683882914027761634588, −1.11081059766122049202867734004, 1.11081059766122049202867734004, 1.27280001683882914027761634588, 2.16217725319526669289692058913, 2.18858965324182768959442761440, 2.27925826571073484171743575601, 2.73249382940162996800094119073, 3.40355059272266370336791755239, 3.59862104190831343971752432541, 3.97555379983719071504035548865, 4.42425776941067545086850175368, 5.27858051588762843407143305543, 5.34198176815464359448850852181, 5.43197034432738427027019327933, 5.54001912774411378084669632374, 6.07804249518703855234572348331, 6.25518012263535103592175532361, 6.41294804193249137275589038306, 6.65782931712861500635309174840, 6.88690813531367525138184837542, 7.20877837705509464941076740476, 7.20908087491782886748791381401, 7.73551708271388336413552364642, 7.80364615787510018936144533052, 8.267743014963939036285783666670, 8.460915175321761235443975782793

Graph of the $Z$-function along the critical line