Properties

Label 8-40e8-1.1-c1e4-0-22
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·9-s − 4·27-s − 24·31-s + 24·37-s + 24·41-s + 20·43-s + 4·49-s − 20·67-s + 24·71-s + 48·79-s − 10·81-s + 12·83-s + 24·89-s − 96·93-s + 60·107-s + 96·111-s + 20·121-s + 96·123-s + 127-s + 80·129-s + 131-s + 137-s + 139-s + 16·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2.30·3-s + 4/3·9-s − 0.769·27-s − 4.31·31-s + 3.94·37-s + 3.74·41-s + 3.04·43-s + 4/7·49-s − 2.44·67-s + 2.84·71-s + 5.40·79-s − 1.11·81-s + 1.31·83-s + 2.54·89-s − 9.95·93-s + 5.80·107-s + 9.11·111-s + 1.81·121-s + 8.65·123-s + 0.0887·127-s + 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.31·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.46925312\)
\(L(\frac12)\) \(\approx\) \(11.46925312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 4 T^{2} - 6 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 10 T + 84 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 116 T^{2} + 6810 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 76 T^{2} + 1974 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 10 T + 132 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 12 T + 70 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 44 T^{2} + 4230 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 - 6 T + 172 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 12 T + 166 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.65948532230546944241151172917, −6.45903669011456216876794986536, −6.20429962429969083927797120553, −6.11056806771401984182229514169, −5.86448894286268259036193452799, −5.59332107084300178945845068308, −5.51193255205727252338744014877, −5.34466375302736938151151565560, −4.72489100613936883255641546037, −4.55365316953575248637947971889, −4.52205395001125350466114157894, −4.21221432115153884411414181234, −3.93370253131450462495579652044, −3.59918204684581914792743069194, −3.31909520095100338431866862732, −3.30697522565437927033711087196, −3.27641404066480984519586420917, −2.46102723005948952091410348880, −2.44557022853871952542399460665, −2.24132143991853128225048977259, −2.21168102323827038235937310569, −1.98417071091467643830613287298, −1.03133021652598914611604034506, −0.847790244608192170227646061092, −0.63154940203184196003722781810, 0.63154940203184196003722781810, 0.847790244608192170227646061092, 1.03133021652598914611604034506, 1.98417071091467643830613287298, 2.21168102323827038235937310569, 2.24132143991853128225048977259, 2.44557022853871952542399460665, 2.46102723005948952091410348880, 3.27641404066480984519586420917, 3.30697522565437927033711087196, 3.31909520095100338431866862732, 3.59918204684581914792743069194, 3.93370253131450462495579652044, 4.21221432115153884411414181234, 4.52205395001125350466114157894, 4.55365316953575248637947971889, 4.72489100613936883255641546037, 5.34466375302736938151151565560, 5.51193255205727252338744014877, 5.59332107084300178945845068308, 5.86448894286268259036193452799, 6.11056806771401984182229514169, 6.20429962429969083927797120553, 6.45903669011456216876794986536, 6.65948532230546944241151172917

Graph of the $Z$-function along the critical line