Properties

Label 8-40e8-1.1-c1e4-0-19
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·9-s + 12·17-s − 36·41-s − 4·49-s + 28·73-s + 57·81-s − 12·89-s + 56·97-s − 60·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 120·153-s + 157-s + 163-s + 167-s + 28·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 10/3·9-s + 2.91·17-s − 5.62·41-s − 4/7·49-s + 3.27·73-s + 19/3·81-s − 1.27·89-s + 5.68·97-s − 5.64·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 9.70·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.763601220\)
\(L(\frac12)\) \(\approx\) \(6.763601220\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 59 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.68226693209946575585033866919, −6.65613428916529316904308832976, −6.41551232282068268546429082149, −6.20768381771529631096708504923, −5.76206524696414855628287636074, −5.49661617337831712320718593387, −5.35140195699131014234739318156, −5.09102860457684433509625386889, −5.08884856980941655817867113235, −4.64932629008631575130717058640, −4.60926622573821709970303468403, −4.28888829682471120431544748555, −3.99981201727396322075655547481, −3.58047722835624578966981436010, −3.56431351919034813383691231886, −3.49546605153785073194898558567, −3.06614619778292456830886088170, −3.02017442303665297041740427907, −2.25146763004207284532689741462, −1.95877629753816336500375151585, −1.87372056865281661912986566625, −1.48570495003332053803400892849, −1.31126170726735790853787954819, −0.922714657948824696762264671392, −0.50984259156794974918424587969, 0.50984259156794974918424587969, 0.922714657948824696762264671392, 1.31126170726735790853787954819, 1.48570495003332053803400892849, 1.87372056865281661912986566625, 1.95877629753816336500375151585, 2.25146763004207284532689741462, 3.02017442303665297041740427907, 3.06614619778292456830886088170, 3.49546605153785073194898558567, 3.56431351919034813383691231886, 3.58047722835624578966981436010, 3.99981201727396322075655547481, 4.28888829682471120431544748555, 4.60926622573821709970303468403, 4.64932629008631575130717058640, 5.08884856980941655817867113235, 5.09102860457684433509625386889, 5.35140195699131014234739318156, 5.49661617337831712320718593387, 5.76206524696414855628287636074, 6.20768381771529631096708504923, 6.41551232282068268546429082149, 6.65613428916529316904308832976, 6.68226693209946575585033866919

Graph of the $Z$-function along the critical line