Properties

Label 8-3e8-1.1-c53e4-0-0
Degree $8$
Conductor $6561$
Sign $1$
Analytic cond. $6.57210\times 10^{8}$
Root an. cond. $12.6535$
Motivic weight $53$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.84e7·2-s − 1.17e16·4-s + 4.56e18·5-s − 2.24e20·7-s − 1.16e24·8-s + 3.12e26·10-s − 2.48e27·11-s + 3.88e28·13-s − 1.53e28·14-s − 7.29e30·16-s + 8.69e32·17-s − 2.55e34·19-s − 5.36e34·20-s − 1.69e35·22-s − 6.92e35·23-s + 6.45e36·25-s + 2.66e36·26-s + 2.64e36·28-s + 1.40e39·29-s − 3.96e39·31-s + 4.65e39·32-s + 5.95e40·34-s − 1.02e39·35-s − 2.83e41·37-s − 1.75e42·38-s − 5.31e42·40-s − 8.16e41·41-s + ⋯
L(s)  = 1  + 0.721·2-s − 1.30·4-s + 1.36·5-s − 0.00905·7-s − 1.36·8-s + 0.988·10-s − 0.627·11-s + 0.117·13-s − 0.00653·14-s − 0.0899·16-s + 2.14·17-s − 3.31·19-s − 1.78·20-s − 0.453·22-s − 0.568·23-s + 0.581·25-s + 0.0847·26-s + 0.0118·28-s + 2.47·29-s − 1.19·31-s + 0.604·32-s + 1.55·34-s − 0.0123·35-s − 0.786·37-s − 2.39·38-s − 1.86·40-s − 0.148·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(54-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+53/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $1$
Analytic conductor: \(6.57210\times 10^{8}\)
Root analytic conductor: \(12.6535\)
Motivic weight: \(53\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 6561,\ (\ :53/2, 53/2, 53/2, 53/2),\ 1)\)

Particular Values

\(L(27)\) \(\approx\) \(0.4418363117\)
\(L(\frac12)\) \(\approx\) \(0.4418363117\)
\(L(\frac{55}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2 \wr S_4$ \( 1 - 2139885 p^{5} T + 1003667114255 p^{14} T^{2} - 22859181486091845 p^{25} T^{3} + 78860968145917904739 p^{41} T^{4} - 22859181486091845 p^{78} T^{5} + 1003667114255 p^{120} T^{6} - 2139885 p^{164} T^{7} + p^{212} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 36511166346354504 p^{3} T + \)\(36\!\cdots\!52\)\( p^{8} T^{2} - \)\(32\!\cdots\!12\)\( p^{14} T^{3} + \)\(21\!\cdots\!74\)\( p^{21} T^{4} - \)\(32\!\cdots\!12\)\( p^{67} T^{5} + \)\(36\!\cdots\!52\)\( p^{114} T^{6} - 36511166346354504 p^{162} T^{7} + p^{212} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 32120252964063632800 p T + \)\(50\!\cdots\!00\)\( p^{4} T^{2} + \)\(57\!\cdots\!00\)\( p^{8} T^{3} + \)\(10\!\cdots\!14\)\( p^{13} T^{4} + \)\(57\!\cdots\!00\)\( p^{61} T^{5} + \)\(50\!\cdots\!00\)\( p^{110} T^{6} + 32120252964063632800 p^{160} T^{7} + p^{212} T^{8} \)
11$C_2 \wr S_4$ \( 1 + \)\(22\!\cdots\!48\)\( p T + \)\(37\!\cdots\!08\)\( p^{2} T^{2} + \)\(57\!\cdots\!76\)\( p^{5} T^{3} + \)\(40\!\cdots\!70\)\( p^{9} T^{4} + \)\(57\!\cdots\!76\)\( p^{58} T^{5} + \)\(37\!\cdots\!08\)\( p^{108} T^{6} + \)\(22\!\cdots\!48\)\( p^{160} T^{7} + p^{212} T^{8} \)
13$C_2 \wr S_4$ \( 1 - \)\(29\!\cdots\!80\)\( p T + \)\(55\!\cdots\!80\)\( p^{4} T^{2} + \)\(40\!\cdots\!60\)\( p^{5} T^{3} + \)\(19\!\cdots\!54\)\( p^{7} T^{4} + \)\(40\!\cdots\!60\)\( p^{58} T^{5} + \)\(55\!\cdots\!80\)\( p^{110} T^{6} - \)\(29\!\cdots\!80\)\( p^{160} T^{7} + p^{212} T^{8} \)
17$C_2 \wr S_4$ \( 1 - \)\(51\!\cdots\!80\)\( p T + \)\(10\!\cdots\!20\)\( p^{3} T^{2} - \)\(14\!\cdots\!60\)\( p^{5} T^{3} + \)\(21\!\cdots\!06\)\( p^{7} T^{4} - \)\(14\!\cdots\!60\)\( p^{58} T^{5} + \)\(10\!\cdots\!20\)\( p^{109} T^{6} - \)\(51\!\cdots\!80\)\( p^{160} T^{7} + p^{212} T^{8} \)
19$C_2 \wr S_4$ \( 1 + \)\(25\!\cdots\!60\)\( T + \)\(19\!\cdots\!44\)\( p T^{2} + \)\(10\!\cdots\!20\)\( p^{2} T^{3} + \)\(23\!\cdots\!66\)\( p^{4} T^{4} + \)\(10\!\cdots\!20\)\( p^{55} T^{5} + \)\(19\!\cdots\!44\)\( p^{107} T^{6} + \)\(25\!\cdots\!60\)\( p^{159} T^{7} + p^{212} T^{8} \)
23$C_2 \wr S_4$ \( 1 + \)\(30\!\cdots\!20\)\( p T + \)\(95\!\cdots\!80\)\( p^{2} T^{2} + \)\(98\!\cdots\!80\)\( p^{4} T^{3} + \)\(73\!\cdots\!02\)\( p^{6} T^{4} + \)\(98\!\cdots\!80\)\( p^{57} T^{5} + \)\(95\!\cdots\!80\)\( p^{108} T^{6} + \)\(30\!\cdots\!20\)\( p^{160} T^{7} + p^{212} T^{8} \)
29$C_2 \wr S_4$ \( 1 - \)\(14\!\cdots\!40\)\( T + \)\(64\!\cdots\!64\)\( p T^{2} - \)\(17\!\cdots\!80\)\( p^{2} T^{3} + \)\(41\!\cdots\!34\)\( p^{3} T^{4} - \)\(17\!\cdots\!80\)\( p^{55} T^{5} + \)\(64\!\cdots\!64\)\( p^{107} T^{6} - \)\(14\!\cdots\!40\)\( p^{159} T^{7} + p^{212} T^{8} \)
31$C_2 \wr S_4$ \( 1 + \)\(39\!\cdots\!32\)\( T + \)\(33\!\cdots\!48\)\( T^{2} + \)\(32\!\cdots\!64\)\( p T^{3} + \)\(55\!\cdots\!70\)\( p^{2} T^{4} + \)\(32\!\cdots\!64\)\( p^{54} T^{5} + \)\(33\!\cdots\!48\)\( p^{106} T^{6} + \)\(39\!\cdots\!32\)\( p^{159} T^{7} + p^{212} T^{8} \)
37$C_2 \wr S_4$ \( 1 + \)\(28\!\cdots\!80\)\( T + \)\(97\!\cdots\!40\)\( p T^{2} + \)\(88\!\cdots\!40\)\( p^{2} T^{3} + \)\(11\!\cdots\!06\)\( p^{3} T^{4} + \)\(88\!\cdots\!40\)\( p^{55} T^{5} + \)\(97\!\cdots\!40\)\( p^{107} T^{6} + \)\(28\!\cdots\!80\)\( p^{159} T^{7} + p^{212} T^{8} \)
41$C_2 \wr S_4$ \( 1 + \)\(19\!\cdots\!68\)\( p T + \)\(40\!\cdots\!48\)\( p^{2} T^{2} - \)\(12\!\cdots\!84\)\( p^{3} T^{3} + \)\(79\!\cdots\!70\)\( p^{4} T^{4} - \)\(12\!\cdots\!84\)\( p^{56} T^{5} + \)\(40\!\cdots\!48\)\( p^{108} T^{6} + \)\(19\!\cdots\!68\)\( p^{160} T^{7} + p^{212} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(45\!\cdots\!00\)\( T + \)\(51\!\cdots\!00\)\( p T^{2} - \)\(30\!\cdots\!00\)\( p^{2} T^{3} + \)\(17\!\cdots\!14\)\( p^{3} T^{4} - \)\(30\!\cdots\!00\)\( p^{55} T^{5} + \)\(51\!\cdots\!00\)\( p^{107} T^{6} - \)\(45\!\cdots\!00\)\( p^{159} T^{7} + p^{212} T^{8} \)
47$C_2 \wr S_4$ \( 1 - \)\(95\!\cdots\!20\)\( p T + \)\(98\!\cdots\!60\)\( p^{2} T^{2} - \)\(55\!\cdots\!60\)\( p^{3} T^{3} + \)\(30\!\cdots\!18\)\( p^{4} T^{4} - \)\(55\!\cdots\!60\)\( p^{56} T^{5} + \)\(98\!\cdots\!60\)\( p^{108} T^{6} - \)\(95\!\cdots\!20\)\( p^{160} T^{7} + p^{212} T^{8} \)
53$C_2 \wr S_4$ \( 1 + \)\(38\!\cdots\!20\)\( T + \)\(13\!\cdots\!80\)\( p T^{2} + \)\(16\!\cdots\!60\)\( T^{3} + \)\(21\!\cdots\!58\)\( T^{4} + \)\(16\!\cdots\!60\)\( p^{53} T^{5} + \)\(13\!\cdots\!80\)\( p^{107} T^{6} + \)\(38\!\cdots\!20\)\( p^{159} T^{7} + p^{212} T^{8} \)
59$C_2 \wr S_4$ \( 1 + \)\(27\!\cdots\!80\)\( p T + \)\(23\!\cdots\!16\)\( T^{2} + \)\(19\!\cdots\!40\)\( T^{3} + \)\(20\!\cdots\!46\)\( T^{4} + \)\(19\!\cdots\!40\)\( p^{53} T^{5} + \)\(23\!\cdots\!16\)\( p^{106} T^{6} + \)\(27\!\cdots\!80\)\( p^{160} T^{7} + p^{212} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(65\!\cdots\!28\)\( T + \)\(79\!\cdots\!68\)\( T^{2} - \)\(10\!\cdots\!76\)\( T^{3} + \)\(33\!\cdots\!70\)\( T^{4} - \)\(10\!\cdots\!76\)\( p^{53} T^{5} + \)\(79\!\cdots\!68\)\( p^{106} T^{6} - \)\(65\!\cdots\!28\)\( p^{159} T^{7} + p^{212} T^{8} \)
67$C_2 \wr S_4$ \( 1 + \)\(11\!\cdots\!60\)\( T + \)\(16\!\cdots\!60\)\( T^{2} + \)\(27\!\cdots\!20\)\( T^{3} + \)\(12\!\cdots\!38\)\( T^{4} + \)\(27\!\cdots\!20\)\( p^{53} T^{5} + \)\(16\!\cdots\!60\)\( p^{106} T^{6} + \)\(11\!\cdots\!60\)\( p^{159} T^{7} + p^{212} T^{8} \)
71$C_2 \wr S_4$ \( 1 + \)\(35\!\cdots\!48\)\( T + \)\(37\!\cdots\!08\)\( T^{2} + \)\(14\!\cdots\!96\)\( T^{3} + \)\(65\!\cdots\!70\)\( T^{4} + \)\(14\!\cdots\!96\)\( p^{53} T^{5} + \)\(37\!\cdots\!08\)\( p^{106} T^{6} + \)\(35\!\cdots\!48\)\( p^{159} T^{7} + p^{212} T^{8} \)
73$C_2 \wr S_4$ \( 1 + \)\(70\!\cdots\!40\)\( T + \)\(40\!\cdots\!20\)\( T^{2} + \)\(14\!\cdots\!20\)\( T^{3} + \)\(41\!\cdots\!78\)\( T^{4} + \)\(14\!\cdots\!20\)\( p^{53} T^{5} + \)\(40\!\cdots\!20\)\( p^{106} T^{6} + \)\(70\!\cdots\!40\)\( p^{159} T^{7} + p^{212} T^{8} \)
79$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!40\)\( T + \)\(10\!\cdots\!56\)\( T^{2} + \)\(11\!\cdots\!80\)\( T^{3} + \)\(51\!\cdots\!26\)\( T^{4} + \)\(11\!\cdots\!80\)\( p^{53} T^{5} + \)\(10\!\cdots\!56\)\( p^{106} T^{6} + \)\(15\!\cdots\!40\)\( p^{159} T^{7} + p^{212} T^{8} \)
83$C_2 \wr S_4$ \( 1 - \)\(26\!\cdots\!20\)\( T + \)\(41\!\cdots\!60\)\( T^{2} - \)\(45\!\cdots\!60\)\( T^{3} + \)\(37\!\cdots\!38\)\( T^{4} - \)\(45\!\cdots\!60\)\( p^{53} T^{5} + \)\(41\!\cdots\!60\)\( p^{106} T^{6} - \)\(26\!\cdots\!20\)\( p^{159} T^{7} + p^{212} T^{8} \)
89$C_2 \wr S_4$ \( 1 - \)\(37\!\cdots\!20\)\( T + \)\(51\!\cdots\!76\)\( T^{2} - \)\(97\!\cdots\!40\)\( T^{3} + \)\(12\!\cdots\!66\)\( T^{4} - \)\(97\!\cdots\!40\)\( p^{53} T^{5} + \)\(51\!\cdots\!76\)\( p^{106} T^{6} - \)\(37\!\cdots\!20\)\( p^{159} T^{7} + p^{212} T^{8} \)
97$C_2 \wr S_4$ \( 1 - \)\(10\!\cdots\!60\)\( T + \)\(42\!\cdots\!40\)\( T^{2} - \)\(14\!\cdots\!20\)\( T^{3} + \)\(11\!\cdots\!58\)\( T^{4} - \)\(14\!\cdots\!20\)\( p^{53} T^{5} + \)\(42\!\cdots\!40\)\( p^{106} T^{6} - \)\(10\!\cdots\!60\)\( p^{159} T^{7} + p^{212} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74308917507019553787097860677, −7.18373549629462894850122178628, −6.69746116334745315905757930045, −6.46525570296664056593121828561, −6.10812911061220154577098985483, −6.05805023967609180906027137215, −5.53582223784712490224594473316, −5.41148448624736301893829136437, −5.23051646392683366194434766174, −4.59998039066223024258027999339, −4.37485700499628250526917750948, −4.31291217417657242813698804956, −4.21284327395293408716484861441, −3.51033530198580412451447884616, −3.18378357527140460056120898021, −3.14797181150811246454786598208, −2.52581552368784280696691274886, −2.36578763858190566093550449557, −2.14580143326305783526536347033, −1.64050772309603176775524115711, −1.49221624870308509646434754778, −1.15270042929802031175863120315, −0.62938678507884257757601191047, −0.49740985635580862300538866179, −0.06916080605691617163504235389, 0.06916080605691617163504235389, 0.49740985635580862300538866179, 0.62938678507884257757601191047, 1.15270042929802031175863120315, 1.49221624870308509646434754778, 1.64050772309603176775524115711, 2.14580143326305783526536347033, 2.36578763858190566093550449557, 2.52581552368784280696691274886, 3.14797181150811246454786598208, 3.18378357527140460056120898021, 3.51033530198580412451447884616, 4.21284327395293408716484861441, 4.31291217417657242813698804956, 4.37485700499628250526917750948, 4.59998039066223024258027999339, 5.23051646392683366194434766174, 5.41148448624736301893829136437, 5.53582223784712490224594473316, 6.05805023967609180906027137215, 6.10812911061220154577098985483, 6.46525570296664056593121828561, 6.69746116334745315905757930045, 7.18373549629462894850122178628, 7.74308917507019553787097860677

Graph of the $Z$-function along the critical line