Properties

Label 8-3e8-1.1-c45e4-0-1
Degree $8$
Conductor $6561$
Sign $1$
Analytic cond. $1.77532\times 10^{8}$
Root an. cond. $10.7438$
Motivic weight $45$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.01e6·2-s + 8.30e12·4-s + 2.88e15·5-s − 3.36e18·7-s − 4.92e19·8-s + 2.02e22·10-s + 1.97e23·11-s + 2.01e25·13-s − 2.36e25·14-s − 3.67e26·16-s + 1.00e28·17-s − 2.65e28·19-s + 2.39e28·20-s + 1.38e30·22-s − 3.08e30·23-s − 2.49e31·25-s + 1.41e32·26-s − 2.79e31·28-s + 1.57e33·29-s + 8.56e33·31-s + 6.32e32·32-s + 7.05e34·34-s − 9.70e33·35-s + 1.89e35·37-s − 1.86e35·38-s − 1.42e35·40-s + 5.40e36·41-s + ⋯
L(s)  = 1  + 1.18·2-s + 0.236·4-s + 0.541·5-s − 0.325·7-s − 0.236·8-s + 0.640·10-s + 0.730·11-s + 1.74·13-s − 0.384·14-s − 0.296·16-s + 2.07·17-s − 0.448·19-s + 0.127·20-s + 0.864·22-s − 0.708·23-s − 0.879·25-s + 2.05·26-s − 0.0767·28-s + 1.96·29-s + 2.38·31-s + 0.0861·32-s + 2.45·34-s − 0.175·35-s + 0.985·37-s − 0.530·38-s − 0.127·40-s + 2.78·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(46-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+45/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $1$
Analytic conductor: \(1.77532\times 10^{8}\)
Root analytic conductor: \(10.7438\)
Motivic weight: \(45\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 6561,\ (\ :45/2, 45/2, 45/2, 45/2),\ 1)\)

Particular Values

\(L(23)\) \(\approx\) \(16.67031854\)
\(L(\frac12)\) \(\approx\) \(16.67031854\)
\(L(\frac{47}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2 \wr S_4$ \( 1 - 1754883 p^{2} T + 160036278965 p^{8} T^{2} - 343343004958161 p^{19} T^{3} + 110022224514169413 p^{33} T^{4} - 343343004958161 p^{64} T^{5} + 160036278965 p^{98} T^{6} - 1754883 p^{137} T^{7} + p^{180} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 115413641985096 p^{2} T + \)\(53\!\cdots\!72\)\( p^{4} T^{2} - \)\(15\!\cdots\!36\)\( p^{6} T^{3} + \)\(45\!\cdots\!22\)\( p^{12} T^{4} - \)\(15\!\cdots\!36\)\( p^{51} T^{5} + \)\(53\!\cdots\!72\)\( p^{94} T^{6} - 115413641985096 p^{137} T^{7} + p^{180} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 480427684723734592 p T + \)\(53\!\cdots\!28\)\( p^{2} T^{2} + \)\(55\!\cdots\!56\)\( p^{6} T^{3} + \)\(11\!\cdots\!90\)\( p^{10} T^{4} + \)\(55\!\cdots\!56\)\( p^{51} T^{5} + \)\(53\!\cdots\!28\)\( p^{92} T^{6} + 480427684723734592 p^{136} T^{7} + p^{180} T^{8} \)
11$C_2 \wr S_4$ \( 1 - \)\(17\!\cdots\!24\)\( p T + \)\(90\!\cdots\!92\)\( p^{3} T^{2} - \)\(17\!\cdots\!60\)\( p^{6} T^{3} + \)\(39\!\cdots\!26\)\( p^{7} T^{4} - \)\(17\!\cdots\!60\)\( p^{51} T^{5} + \)\(90\!\cdots\!92\)\( p^{93} T^{6} - \)\(17\!\cdots\!24\)\( p^{136} T^{7} + p^{180} T^{8} \)
13$C_2 \wr S_4$ \( 1 - \)\(20\!\cdots\!52\)\( T + \)\(47\!\cdots\!68\)\( p T^{2} - \)\(37\!\cdots\!52\)\( p^{3} T^{3} + \)\(27\!\cdots\!50\)\( p^{6} T^{4} - \)\(37\!\cdots\!52\)\( p^{48} T^{5} + \)\(47\!\cdots\!68\)\( p^{91} T^{6} - \)\(20\!\cdots\!52\)\( p^{135} T^{7} + p^{180} T^{8} \)
17$C_2 \wr S_4$ \( 1 - \)\(10\!\cdots\!48\)\( T + \)\(27\!\cdots\!76\)\( p T^{2} - \)\(80\!\cdots\!80\)\( p^{2} T^{3} + \)\(15\!\cdots\!06\)\( p^{4} T^{4} - \)\(80\!\cdots\!80\)\( p^{47} T^{5} + \)\(27\!\cdots\!76\)\( p^{91} T^{6} - \)\(10\!\cdots\!48\)\( p^{135} T^{7} + p^{180} T^{8} \)
19$C_2 \wr S_4$ \( 1 + \)\(26\!\cdots\!72\)\( T + \)\(60\!\cdots\!08\)\( p T^{2} + \)\(34\!\cdots\!16\)\( p^{3} T^{3} + \)\(23\!\cdots\!06\)\( p^{5} T^{4} + \)\(34\!\cdots\!16\)\( p^{48} T^{5} + \)\(60\!\cdots\!08\)\( p^{91} T^{6} + \)\(26\!\cdots\!72\)\( p^{135} T^{7} + p^{180} T^{8} \)
23$C_2 \wr S_4$ \( 1 + \)\(30\!\cdots\!48\)\( T + \)\(38\!\cdots\!28\)\( T^{2} - \)\(72\!\cdots\!56\)\( p T^{3} + \)\(95\!\cdots\!90\)\( p^{2} T^{4} - \)\(72\!\cdots\!56\)\( p^{46} T^{5} + \)\(38\!\cdots\!28\)\( p^{90} T^{6} + \)\(30\!\cdots\!48\)\( p^{135} T^{7} + p^{180} T^{8} \)
29$C_2 \wr S_4$ \( 1 - \)\(15\!\cdots\!64\)\( T + \)\(25\!\cdots\!40\)\( T^{2} - \)\(71\!\cdots\!12\)\( p T^{3} + \)\(24\!\cdots\!98\)\( p^{2} T^{4} - \)\(71\!\cdots\!12\)\( p^{46} T^{5} + \)\(25\!\cdots\!40\)\( p^{90} T^{6} - \)\(15\!\cdots\!64\)\( p^{135} T^{7} + p^{180} T^{8} \)
31$C_2 \wr S_4$ \( 1 - \)\(85\!\cdots\!44\)\( T + \)\(18\!\cdots\!48\)\( p T^{2} - \)\(26\!\cdots\!12\)\( p^{2} T^{3} + \)\(34\!\cdots\!14\)\( p^{3} T^{4} - \)\(26\!\cdots\!12\)\( p^{47} T^{5} + \)\(18\!\cdots\!48\)\( p^{91} T^{6} - \)\(85\!\cdots\!44\)\( p^{135} T^{7} + p^{180} T^{8} \)
37$C_2 \wr S_4$ \( 1 - \)\(18\!\cdots\!36\)\( T + \)\(27\!\cdots\!76\)\( p T^{2} - \)\(10\!\cdots\!44\)\( p^{2} T^{3} + \)\(91\!\cdots\!90\)\( p^{3} T^{4} - \)\(10\!\cdots\!44\)\( p^{47} T^{5} + \)\(27\!\cdots\!76\)\( p^{91} T^{6} - \)\(18\!\cdots\!36\)\( p^{135} T^{7} + p^{180} T^{8} \)
41$C_2 \wr S_4$ \( 1 - \)\(54\!\cdots\!16\)\( T + \)\(44\!\cdots\!08\)\( p T^{2} - \)\(29\!\cdots\!88\)\( p^{2} T^{3} + \)\(15\!\cdots\!74\)\( p^{3} T^{4} - \)\(29\!\cdots\!88\)\( p^{47} T^{5} + \)\(44\!\cdots\!08\)\( p^{91} T^{6} - \)\(54\!\cdots\!16\)\( p^{135} T^{7} + p^{180} T^{8} \)
43$C_2 \wr S_4$ \( 1 + \)\(18\!\cdots\!20\)\( p T + \)\(55\!\cdots\!80\)\( p^{2} T^{2} + \)\(73\!\cdots\!40\)\( p^{3} T^{3} + \)\(13\!\cdots\!98\)\( p^{4} T^{4} + \)\(73\!\cdots\!40\)\( p^{48} T^{5} + \)\(55\!\cdots\!80\)\( p^{92} T^{6} + \)\(18\!\cdots\!20\)\( p^{136} T^{7} + p^{180} T^{8} \)
47$C_2 \wr S_4$ \( 1 - \)\(73\!\cdots\!20\)\( T + \)\(81\!\cdots\!20\)\( T^{2} - \)\(38\!\cdots\!40\)\( T^{3} + \)\(22\!\cdots\!98\)\( T^{4} - \)\(38\!\cdots\!40\)\( p^{45} T^{5} + \)\(81\!\cdots\!20\)\( p^{90} T^{6} - \)\(73\!\cdots\!20\)\( p^{135} T^{7} + p^{180} T^{8} \)
53$C_2 \wr S_4$ \( 1 - \)\(18\!\cdots\!32\)\( T + \)\(40\!\cdots\!88\)\( T^{2} - \)\(25\!\cdots\!88\)\( T^{3} + \)\(86\!\cdots\!70\)\( T^{4} - \)\(25\!\cdots\!88\)\( p^{45} T^{5} + \)\(40\!\cdots\!88\)\( p^{90} T^{6} - \)\(18\!\cdots\!32\)\( p^{135} T^{7} + p^{180} T^{8} \)
59$C_2 \wr S_4$ \( 1 + \)\(18\!\cdots\!72\)\( T + \)\(29\!\cdots\!92\)\( T^{2} + \)\(28\!\cdots\!84\)\( T^{3} + \)\(24\!\cdots\!14\)\( T^{4} + \)\(28\!\cdots\!84\)\( p^{45} T^{5} + \)\(29\!\cdots\!92\)\( p^{90} T^{6} + \)\(18\!\cdots\!72\)\( p^{135} T^{7} + p^{180} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(27\!\cdots\!40\)\( T + \)\(87\!\cdots\!96\)\( T^{2} - \)\(25\!\cdots\!60\)\( p T^{3} + \)\(29\!\cdots\!06\)\( T^{4} - \)\(25\!\cdots\!60\)\( p^{46} T^{5} + \)\(87\!\cdots\!96\)\( p^{90} T^{6} - \)\(27\!\cdots\!40\)\( p^{135} T^{7} + p^{180} T^{8} \)
67$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!08\)\( T + \)\(32\!\cdots\!52\)\( T^{2} + \)\(21\!\cdots\!00\)\( T^{3} + \)\(39\!\cdots\!46\)\( T^{4} + \)\(21\!\cdots\!00\)\( p^{45} T^{5} + \)\(32\!\cdots\!52\)\( p^{90} T^{6} + \)\(15\!\cdots\!08\)\( p^{135} T^{7} + p^{180} T^{8} \)
71$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!08\)\( T + \)\(52\!\cdots\!28\)\( T^{2} - \)\(53\!\cdots\!44\)\( T^{3} + \)\(14\!\cdots\!70\)\( T^{4} - \)\(53\!\cdots\!44\)\( p^{45} T^{5} + \)\(52\!\cdots\!28\)\( p^{90} T^{6} + \)\(15\!\cdots\!08\)\( p^{135} T^{7} + p^{180} T^{8} \)
73$C_2 \wr S_4$ \( 1 + \)\(19\!\cdots\!12\)\( T + \)\(32\!\cdots\!68\)\( T^{2} + \)\(39\!\cdots\!08\)\( T^{3} + \)\(48\!\cdots\!50\)\( p T^{4} + \)\(39\!\cdots\!08\)\( p^{45} T^{5} + \)\(32\!\cdots\!68\)\( p^{90} T^{6} + \)\(19\!\cdots\!12\)\( p^{135} T^{7} + p^{180} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(13\!\cdots\!40\)\( T + \)\(19\!\cdots\!24\)\( p T^{2} - \)\(10\!\cdots\!80\)\( T^{3} + \)\(63\!\cdots\!06\)\( T^{4} - \)\(10\!\cdots\!80\)\( p^{45} T^{5} + \)\(19\!\cdots\!24\)\( p^{91} T^{6} - \)\(13\!\cdots\!40\)\( p^{135} T^{7} + p^{180} T^{8} \)
83$C_2 \wr S_4$ \( 1 - \)\(31\!\cdots\!16\)\( T + \)\(89\!\cdots\!40\)\( T^{2} - \)\(15\!\cdots\!96\)\( T^{3} + \)\(27\!\cdots\!46\)\( T^{4} - \)\(15\!\cdots\!96\)\( p^{45} T^{5} + \)\(89\!\cdots\!40\)\( p^{90} T^{6} - \)\(31\!\cdots\!16\)\( p^{135} T^{7} + p^{180} T^{8} \)
89$C_2 \wr S_4$ \( 1 + \)\(42\!\cdots\!72\)\( p T + \)\(13\!\cdots\!72\)\( T^{2} + \)\(47\!\cdots\!16\)\( T^{3} + \)\(90\!\cdots\!54\)\( T^{4} + \)\(47\!\cdots\!16\)\( p^{45} T^{5} + \)\(13\!\cdots\!72\)\( p^{90} T^{6} + \)\(42\!\cdots\!72\)\( p^{136} T^{7} + p^{180} T^{8} \)
97$C_2 \wr S_4$ \( 1 - \)\(73\!\cdots\!52\)\( T + \)\(62\!\cdots\!92\)\( T^{2} - \)\(31\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!26\)\( T^{4} - \)\(31\!\cdots\!80\)\( p^{45} T^{5} + \)\(62\!\cdots\!92\)\( p^{90} T^{6} - \)\(73\!\cdots\!52\)\( p^{135} T^{7} + p^{180} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.955779924423690824219685881465, −7.64981362939378822800007904854, −7.54929213912771290511612877217, −6.84516039502176901444485578480, −6.31488915676166531967622176539, −6.24733426686733527328001490570, −6.14851606310970860315820516991, −5.74543535301108525879119965560, −5.70974981765925257660803616352, −4.83948320222632828324968883037, −4.60113538257528553612460114474, −4.57266894849477227560287299611, −4.33415524940488086767490675379, −3.54005519619034183900678146463, −3.51794097036086522731426854938, −3.47547731198806609391353751635, −2.83501067652096323761807330225, −2.68590774477736436080132756636, −2.16472107421622660091423371853, −1.92103766316001842313479937481, −1.43252679331502422244158160674, −0.986111095410851422090604904843, −0.973715806496403575478003409506, −0.808996553903674065746909911727, −0.26018395715946803124686487114, 0.26018395715946803124686487114, 0.808996553903674065746909911727, 0.973715806496403575478003409506, 0.986111095410851422090604904843, 1.43252679331502422244158160674, 1.92103766316001842313479937481, 2.16472107421622660091423371853, 2.68590774477736436080132756636, 2.83501067652096323761807330225, 3.47547731198806609391353751635, 3.51794097036086522731426854938, 3.54005519619034183900678146463, 4.33415524940488086767490675379, 4.57266894849477227560287299611, 4.60113538257528553612460114474, 4.83948320222632828324968883037, 5.70974981765925257660803616352, 5.74543535301108525879119965560, 6.14851606310970860315820516991, 6.24733426686733527328001490570, 6.31488915676166531967622176539, 6.84516039502176901444485578480, 7.54929213912771290511612877217, 7.64981362939378822800007904854, 7.955779924423690824219685881465

Graph of the $Z$-function along the critical line