Properties

Label 8-3e8-1.1-c43e4-0-0
Degree $8$
Conductor $6561$
Sign $1$
Analytic cond. $1.23410\times 10^{8}$
Root an. cond. $10.2664$
Motivic weight $43$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.66e6·2-s − 1.54e12·4-s − 1.65e15·5-s + 1.14e17·7-s − 1.70e19·8-s + 2.74e21·10-s − 8.71e21·11-s − 1.62e24·13-s − 1.90e23·14-s + 3.74e25·16-s − 2.93e26·17-s − 2.59e27·19-s + 2.55e27·20-s + 1.44e28·22-s + 1.65e29·23-s + 1.70e29·25-s + 2.69e30·26-s − 1.77e29·28-s − 5.01e31·29-s + 1.53e32·31-s − 1.13e32·32-s + 4.87e32·34-s − 1.88e32·35-s + 1.95e34·37-s + 4.30e33·38-s + 2.81e34·40-s + 9.03e33·41-s + ⋯
L(s)  = 1  − 0.559·2-s − 0.175·4-s − 1.54·5-s + 0.0774·7-s − 0.652·8-s + 0.866·10-s − 0.355·11-s − 1.82·13-s − 0.0433·14-s + 0.484·16-s − 1.02·17-s − 0.833·19-s + 0.272·20-s + 0.198·22-s + 0.875·23-s + 0.149·25-s + 1.01·26-s − 0.0136·28-s − 1.81·29-s + 1.32·31-s − 0.493·32-s + 0.576·34-s − 0.119·35-s + 3.76·37-s + 0.466·38-s + 1.01·40-s + 0.191·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(44-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+43/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $1$
Analytic conductor: \(1.23410\times 10^{8}\)
Root analytic conductor: \(10.2664\)
Motivic weight: \(43\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 6561,\ (\ :43/2, 43/2, 43/2, 43/2),\ 1)\)

Particular Values

\(L(22)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{45}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2 \wr S_4$ \( 1 + 830007 p T + 67236468785 p^{6} T^{2} + 408021684903009 p^{16} T^{3} + 77971628085324573 p^{29} T^{4} + 408021684903009 p^{59} T^{5} + 67236468785 p^{92} T^{6} + 830007 p^{130} T^{7} + p^{172} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 330130161507384 p T + \)\(81\!\cdots\!32\)\( p^{5} T^{2} + \)\(39\!\cdots\!08\)\( p^{10} T^{3} + \)\(59\!\cdots\!42\)\( p^{17} T^{4} + \)\(39\!\cdots\!08\)\( p^{53} T^{5} + \)\(81\!\cdots\!32\)\( p^{91} T^{6} + 330130161507384 p^{130} T^{7} + p^{172} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 114481425784209728 T + \)\(93\!\cdots\!84\)\( p T^{2} - \)\(52\!\cdots\!92\)\( p^{4} T^{3} + \)\(23\!\cdots\!90\)\( p^{7} T^{4} - \)\(52\!\cdots\!92\)\( p^{47} T^{5} + \)\(93\!\cdots\!84\)\( p^{87} T^{6} - 114481425784209728 p^{129} T^{7} + p^{172} T^{8} \)
11$C_2 \wr S_4$ \( 1 + \)\(79\!\cdots\!36\)\( p T + \)\(10\!\cdots\!52\)\( p^{3} T^{2} + \)\(52\!\cdots\!60\)\( p^{3} T^{3} + \)\(62\!\cdots\!26\)\( p^{6} T^{4} + \)\(52\!\cdots\!60\)\( p^{46} T^{5} + \)\(10\!\cdots\!52\)\( p^{89} T^{6} + \)\(79\!\cdots\!36\)\( p^{130} T^{7} + p^{172} T^{8} \)
13$C_2 \wr S_4$ \( 1 + \)\(16\!\cdots\!96\)\( T + \)\(21\!\cdots\!72\)\( p T^{2} + \)\(14\!\cdots\!84\)\( p^{3} T^{3} + \)\(68\!\cdots\!50\)\( p^{6} T^{4} + \)\(14\!\cdots\!84\)\( p^{46} T^{5} + \)\(21\!\cdots\!72\)\( p^{87} T^{6} + \)\(16\!\cdots\!96\)\( p^{129} T^{7} + p^{172} T^{8} \)
17$C_2 \wr S_4$ \( 1 + \)\(29\!\cdots\!76\)\( T + \)\(17\!\cdots\!04\)\( p T^{2} + \)\(13\!\cdots\!00\)\( p^{3} T^{3} + \)\(25\!\cdots\!18\)\( p^{5} T^{4} + \)\(13\!\cdots\!00\)\( p^{46} T^{5} + \)\(17\!\cdots\!04\)\( p^{87} T^{6} + \)\(29\!\cdots\!76\)\( p^{129} T^{7} + p^{172} T^{8} \)
19$C_2 \wr S_4$ \( 1 + \)\(25\!\cdots\!88\)\( T + \)\(10\!\cdots\!28\)\( p T^{2} + \)\(11\!\cdots\!56\)\( p^{2} T^{3} + \)\(15\!\cdots\!34\)\( p^{4} T^{4} + \)\(11\!\cdots\!56\)\( p^{45} T^{5} + \)\(10\!\cdots\!28\)\( p^{87} T^{6} + \)\(25\!\cdots\!88\)\( p^{129} T^{7} + p^{172} T^{8} \)
23$C_2 \wr S_4$ \( 1 - \)\(16\!\cdots\!44\)\( T + \)\(11\!\cdots\!12\)\( T^{2} - \)\(67\!\cdots\!68\)\( p T^{3} + \)\(10\!\cdots\!70\)\( p^{2} T^{4} - \)\(67\!\cdots\!68\)\( p^{44} T^{5} + \)\(11\!\cdots\!12\)\( p^{86} T^{6} - \)\(16\!\cdots\!44\)\( p^{129} T^{7} + p^{172} T^{8} \)
29$C_2 \wr S_4$ \( 1 + \)\(50\!\cdots\!64\)\( T + \)\(11\!\cdots\!00\)\( p T^{2} + \)\(44\!\cdots\!52\)\( p^{3} T^{3} + \)\(15\!\cdots\!22\)\( p^{3} T^{4} + \)\(44\!\cdots\!52\)\( p^{46} T^{5} + \)\(11\!\cdots\!00\)\( p^{87} T^{6} + \)\(50\!\cdots\!64\)\( p^{129} T^{7} + p^{172} T^{8} \)
31$C_2 \wr S_4$ \( 1 - \)\(15\!\cdots\!24\)\( T + \)\(45\!\cdots\!08\)\( T^{2} - \)\(46\!\cdots\!32\)\( p^{2} T^{3} + \)\(86\!\cdots\!54\)\( p^{2} T^{4} - \)\(46\!\cdots\!32\)\( p^{45} T^{5} + \)\(45\!\cdots\!08\)\( p^{86} T^{6} - \)\(15\!\cdots\!24\)\( p^{129} T^{7} + p^{172} T^{8} \)
37$C_2 \wr S_4$ \( 1 - \)\(19\!\cdots\!28\)\( T + \)\(61\!\cdots\!04\)\( p T^{2} - \)\(13\!\cdots\!48\)\( p^{2} T^{3} + \)\(21\!\cdots\!90\)\( p^{3} T^{4} - \)\(13\!\cdots\!48\)\( p^{45} T^{5} + \)\(61\!\cdots\!04\)\( p^{87} T^{6} - \)\(19\!\cdots\!28\)\( p^{129} T^{7} + p^{172} T^{8} \)
41$C_2 \wr S_4$ \( 1 - \)\(22\!\cdots\!16\)\( p T - \)\(22\!\cdots\!72\)\( p^{2} T^{2} - \)\(59\!\cdots\!68\)\( p^{3} T^{3} + \)\(25\!\cdots\!34\)\( p^{4} T^{4} - \)\(59\!\cdots\!68\)\( p^{46} T^{5} - \)\(22\!\cdots\!72\)\( p^{88} T^{6} - \)\(22\!\cdots\!16\)\( p^{130} T^{7} + p^{172} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(57\!\cdots\!00\)\( T + \)\(28\!\cdots\!40\)\( T^{2} - \)\(91\!\cdots\!00\)\( T^{3} + \)\(40\!\cdots\!98\)\( T^{4} - \)\(91\!\cdots\!00\)\( p^{43} T^{5} + \)\(28\!\cdots\!40\)\( p^{86} T^{6} - \)\(57\!\cdots\!00\)\( p^{129} T^{7} + p^{172} T^{8} \)
47$C_2 \wr S_4$ \( 1 + \)\(48\!\cdots\!40\)\( T + \)\(19\!\cdots\!80\)\( T^{2} + \)\(82\!\cdots\!20\)\( T^{3} + \)\(20\!\cdots\!58\)\( T^{4} + \)\(82\!\cdots\!20\)\( p^{43} T^{5} + \)\(19\!\cdots\!80\)\( p^{86} T^{6} + \)\(48\!\cdots\!40\)\( p^{129} T^{7} + p^{172} T^{8} \)
53$C_2 \wr S_4$ \( 1 - \)\(40\!\cdots\!64\)\( T + \)\(11\!\cdots\!12\)\( T^{2} - \)\(19\!\cdots\!44\)\( T^{3} + \)\(27\!\cdots\!90\)\( T^{4} - \)\(19\!\cdots\!44\)\( p^{43} T^{5} + \)\(11\!\cdots\!12\)\( p^{86} T^{6} - \)\(40\!\cdots\!64\)\( p^{129} T^{7} + p^{172} T^{8} \)
59$C_2 \wr S_4$ \( 1 - \)\(31\!\cdots\!32\)\( T + \)\(32\!\cdots\!72\)\( T^{2} - \)\(69\!\cdots\!84\)\( T^{3} + \)\(57\!\cdots\!94\)\( T^{4} - \)\(69\!\cdots\!84\)\( p^{43} T^{5} + \)\(32\!\cdots\!72\)\( p^{86} T^{6} - \)\(31\!\cdots\!32\)\( p^{129} T^{7} + p^{172} T^{8} \)
61$C_2 \wr S_4$ \( 1 + \)\(24\!\cdots\!60\)\( T + \)\(18\!\cdots\!76\)\( T^{2} - \)\(57\!\cdots\!60\)\( T^{3} - \)\(20\!\cdots\!34\)\( T^{4} - \)\(57\!\cdots\!60\)\( p^{43} T^{5} + \)\(18\!\cdots\!76\)\( p^{86} T^{6} + \)\(24\!\cdots\!60\)\( p^{129} T^{7} + p^{172} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(10\!\cdots\!76\)\( T + \)\(13\!\cdots\!68\)\( T^{2} - \)\(10\!\cdots\!00\)\( T^{3} + \)\(65\!\cdots\!26\)\( T^{4} - \)\(10\!\cdots\!00\)\( p^{43} T^{5} + \)\(13\!\cdots\!68\)\( p^{86} T^{6} - \)\(10\!\cdots\!76\)\( p^{129} T^{7} + p^{172} T^{8} \)
71$C_2 \wr S_4$ \( 1 - \)\(71\!\cdots\!72\)\( T + \)\(94\!\cdots\!88\)\( T^{2} - \)\(62\!\cdots\!04\)\( T^{3} + \)\(46\!\cdots\!70\)\( T^{4} - \)\(62\!\cdots\!04\)\( p^{43} T^{5} + \)\(94\!\cdots\!88\)\( p^{86} T^{6} - \)\(71\!\cdots\!72\)\( p^{129} T^{7} + p^{172} T^{8} \)
73$C_2 \wr S_4$ \( 1 - \)\(54\!\cdots\!96\)\( T + \)\(34\!\cdots\!32\)\( T^{2} - \)\(18\!\cdots\!76\)\( T^{3} + \)\(60\!\cdots\!10\)\( T^{4} - \)\(18\!\cdots\!76\)\( p^{43} T^{5} + \)\(34\!\cdots\!32\)\( p^{86} T^{6} - \)\(54\!\cdots\!96\)\( p^{129} T^{7} + p^{172} T^{8} \)
79$C_2 \wr S_4$ \( 1 + \)\(18\!\cdots\!60\)\( T - \)\(12\!\cdots\!44\)\( T^{2} + \)\(59\!\cdots\!20\)\( T^{3} + \)\(25\!\cdots\!26\)\( T^{4} + \)\(59\!\cdots\!20\)\( p^{43} T^{5} - \)\(12\!\cdots\!44\)\( p^{86} T^{6} + \)\(18\!\cdots\!60\)\( p^{129} T^{7} + p^{172} T^{8} \)
83$C_2 \wr S_4$ \( 1 + \)\(20\!\cdots\!08\)\( T + \)\(10\!\cdots\!80\)\( T^{2} + \)\(13\!\cdots\!52\)\( T^{3} + \)\(43\!\cdots\!46\)\( T^{4} + \)\(13\!\cdots\!52\)\( p^{43} T^{5} + \)\(10\!\cdots\!80\)\( p^{86} T^{6} + \)\(20\!\cdots\!08\)\( p^{129} T^{7} + p^{172} T^{8} \)
89$C_2 \wr S_4$ \( 1 - \)\(44\!\cdots\!68\)\( T + \)\(24\!\cdots\!92\)\( T^{2} - \)\(88\!\cdots\!16\)\( T^{3} + \)\(23\!\cdots\!74\)\( T^{4} - \)\(88\!\cdots\!16\)\( p^{43} T^{5} + \)\(24\!\cdots\!92\)\( p^{86} T^{6} - \)\(44\!\cdots\!68\)\( p^{129} T^{7} + p^{172} T^{8} \)
97$C_2 \wr S_4$ \( 1 + \)\(50\!\cdots\!64\)\( T + \)\(60\!\cdots\!28\)\( T^{2} + \)\(93\!\cdots\!00\)\( T^{3} + \)\(13\!\cdots\!66\)\( T^{4} + \)\(93\!\cdots\!00\)\( p^{43} T^{5} + \)\(60\!\cdots\!28\)\( p^{86} T^{6} + \)\(50\!\cdots\!64\)\( p^{129} T^{7} + p^{172} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.931540656948352853778022520065, −8.223186282229929957687131382840, −8.128827884430048812821009546942, −8.058576614074357235740715306333, −7.60272045614349586943430624039, −7.29560904312258193354322102480, −6.92800794839397141543499735615, −6.69734430681113054944306686898, −6.18403265819907447778514322104, −6.01118244347781824597018823376, −5.36700163616483570130750906925, −5.23114981489662416703672607986, −4.84374782121906602117978132376, −4.32915966400087821445245978989, −4.15941511573661423835645147304, −4.12375565418582483477199449051, −3.46693129450593846832177981771, −3.27625094239747564895977362703, −2.70261357090689046836844828210, −2.39419296734731610415870540065, −2.37440803085602366538592330170, −2.07218531761947109629976809635, −1.17117040845226247451701611640, −1.15392804742021642644888944651, −0.78823924266162235445872667846, 0, 0, 0, 0, 0.78823924266162235445872667846, 1.15392804742021642644888944651, 1.17117040845226247451701611640, 2.07218531761947109629976809635, 2.37440803085602366538592330170, 2.39419296734731610415870540065, 2.70261357090689046836844828210, 3.27625094239747564895977362703, 3.46693129450593846832177981771, 4.12375565418582483477199449051, 4.15941511573661423835645147304, 4.32915966400087821445245978989, 4.84374782121906602117978132376, 5.23114981489662416703672607986, 5.36700163616483570130750906925, 6.01118244347781824597018823376, 6.18403265819907447778514322104, 6.69734430681113054944306686898, 6.92800794839397141543499735615, 7.29560904312258193354322102480, 7.60272045614349586943430624039, 8.058576614074357235740715306333, 8.128827884430048812821009546942, 8.223186282229929957687131382840, 8.931540656948352853778022520065

Graph of the $Z$-function along the critical line