Properties

Label 8-3e8-1.1-c33e4-0-0
Degree $8$
Conductor $6561$
Sign $1$
Analytic cond. $1.48570\times 10^{7}$
Root an. cond. $7.87937$
Motivic weight $33$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.35e8·4-s − 1.28e14·7-s − 4.46e18·13-s − 1.47e20·16-s − 5.36e21·19-s + 7.08e22·25-s + 1.74e22·28-s − 8.79e24·31-s + 2.63e26·37-s − 2.61e27·43-s + 6.63e27·49-s + 6.04e26·52-s − 3.26e29·61-s + 2.99e28·64-s − 2.76e30·67-s − 1.18e31·73-s + 7.26e29·76-s − 3.27e31·79-s + 5.75e32·91-s + 2.28e32·97-s − 9.59e30·100-s + 1.57e33·103-s + 1.48e34·109-s + 1.90e34·112-s − 7.25e34·121-s + 1.19e33·124-s + 127-s + ⋯
L(s)  = 1  − 0.0157·4-s − 1.46·7-s − 1.85·13-s − 1.99·16-s − 4.26·19-s + 0.608·25-s + 0.0231·28-s − 2.17·31-s + 3.51·37-s − 2.92·43-s + 0.857·49-s + 0.0293·52-s − 1.13·61-s + 0.0472·64-s − 2.04·67-s − 2.12·73-s + 0.0673·76-s − 1.60·79-s + 2.72·91-s + 0.377·97-s − 0.00959·100-s + 0.966·103-s + 3.59·109-s + 2.93·112-s − 3.12·121-s + 0.0342·124-s + 6.26·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(34-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+33/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $1$
Analytic conductor: \(1.48570\times 10^{7}\)
Root analytic conductor: \(7.87937\)
Motivic weight: \(33\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 6561,\ (\ :33/2, 33/2, 33/2, 33/2),\ 1)\)

Particular Values

\(L(17)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{35}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2^2 \wr C_2$ \( 1 + 4233619 p^{5} T^{2} + 281369109913113 p^{19} T^{4} + 4233619 p^{71} T^{6} + p^{132} T^{8} \)
5$C_2^2 \wr C_2$ \( 1 - \)\(56\!\cdots\!84\)\( p^{3} T^{2} + \)\(10\!\cdots\!62\)\( p^{10} T^{4} - \)\(56\!\cdots\!84\)\( p^{69} T^{6} + p^{132} T^{8} \)
7$D_{4}$ \( ( 1 + 9211874143160 p T + \)\(12\!\cdots\!14\)\( p^{4} T^{2} + 9211874143160 p^{34} T^{3} + p^{66} T^{4} )^{2} \)
11$C_2^2 \wr C_2$ \( 1 + \)\(65\!\cdots\!84\)\( p T^{2} + \)\(17\!\cdots\!86\)\( p^{3} T^{4} + \)\(65\!\cdots\!84\)\( p^{67} T^{6} + p^{132} T^{8} \)
13$D_{4}$ \( ( 1 + 13199077108980380 p^{2} T + \)\(47\!\cdots\!98\)\( p^{3} T^{2} + 13199077108980380 p^{35} T^{3} + p^{66} T^{4} )^{2} \)
17$C_2^2 \wr C_2$ \( 1 + \)\(13\!\cdots\!08\)\( T^{2} + \)\(26\!\cdots\!86\)\( p^{2} T^{4} + \)\(13\!\cdots\!08\)\( p^{66} T^{6} + p^{132} T^{8} \)
19$D_{4}$ \( ( 1 + \)\(26\!\cdots\!52\)\( T + \)\(23\!\cdots\!26\)\( p T^{2} + \)\(26\!\cdots\!52\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
23$C_2^2 \wr C_2$ \( 1 + \)\(29\!\cdots\!72\)\( T^{2} + \)\(68\!\cdots\!06\)\( p^{2} T^{4} + \)\(29\!\cdots\!72\)\( p^{66} T^{6} + p^{132} T^{8} \)
29$C_2^2 \wr C_2$ \( 1 + \)\(19\!\cdots\!16\)\( p^{2} T^{2} + \)\(29\!\cdots\!46\)\( p^{4} T^{4} + \)\(19\!\cdots\!16\)\( p^{68} T^{6} + p^{132} T^{8} \)
31$D_{4}$ \( ( 1 + \)\(14\!\cdots\!84\)\( p T + \)\(14\!\cdots\!26\)\( p^{2} T^{2} + \)\(14\!\cdots\!84\)\( p^{34} T^{3} + p^{66} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 - \)\(13\!\cdots\!40\)\( T + \)\(15\!\cdots\!94\)\( T^{2} - \)\(13\!\cdots\!40\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
41$C_2^2 \wr C_2$ \( 1 + \)\(31\!\cdots\!84\)\( T^{2} + \)\(64\!\cdots\!46\)\( T^{4} + \)\(31\!\cdots\!84\)\( p^{66} T^{6} + p^{132} T^{8} \)
43$D_{4}$ \( ( 1 + \)\(13\!\cdots\!20\)\( T + \)\(20\!\cdots\!86\)\( T^{2} + \)\(13\!\cdots\!20\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
47$C_2^2 \wr C_2$ \( 1 + \)\(27\!\cdots\!48\)\( T^{2} + \)\(38\!\cdots\!34\)\( T^{4} + \)\(27\!\cdots\!48\)\( p^{66} T^{6} + p^{132} T^{8} \)
53$C_2^2 \wr C_2$ \( 1 + \)\(81\!\cdots\!52\)\( T^{2} + \)\(14\!\cdots\!34\)\( T^{4} + \)\(81\!\cdots\!52\)\( p^{66} T^{6} + p^{132} T^{8} \)
59$C_2^2 \wr C_2$ \( 1 + \)\(27\!\cdots\!16\)\( T^{2} + \)\(32\!\cdots\!46\)\( T^{4} + \)\(27\!\cdots\!16\)\( p^{66} T^{6} + p^{132} T^{8} \)
61$D_{4}$ \( ( 1 + \)\(16\!\cdots\!56\)\( T - \)\(40\!\cdots\!54\)\( T^{2} + \)\(16\!\cdots\!56\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + \)\(13\!\cdots\!20\)\( T + \)\(74\!\cdots\!74\)\( T^{2} + \)\(13\!\cdots\!20\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
71$C_2^2 \wr C_2$ \( 1 + \)\(24\!\cdots\!44\)\( T^{2} + \)\(38\!\cdots\!26\)\( T^{4} + \)\(24\!\cdots\!44\)\( p^{66} T^{6} + p^{132} T^{8} \)
73$D_{4}$ \( ( 1 + \)\(59\!\cdots\!60\)\( T + \)\(65\!\cdots\!66\)\( T^{2} + \)\(59\!\cdots\!60\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + \)\(16\!\cdots\!28\)\( T + \)\(65\!\cdots\!74\)\( T^{2} + \)\(16\!\cdots\!28\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
83$C_2^2 \wr C_2$ \( 1 + \)\(57\!\cdots\!12\)\( T^{2} + \)\(15\!\cdots\!74\)\( T^{4} + \)\(57\!\cdots\!12\)\( p^{66} T^{6} + p^{132} T^{8} \)
89$C_2^2 \wr C_2$ \( 1 + \)\(56\!\cdots\!76\)\( T^{2} + \)\(14\!\cdots\!66\)\( T^{4} + \)\(56\!\cdots\!76\)\( p^{66} T^{6} + p^{132} T^{8} \)
97$D_{4}$ \( ( 1 - \)\(11\!\cdots\!80\)\( T + \)\(68\!\cdots\!54\)\( T^{2} - \)\(11\!\cdots\!80\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04153719546873848783866044477, −9.350870869149623534195643683669, −8.956283450880080548424849581725, −8.930716553045993118793441606994, −8.663142961690271467687070138919, −7.921671808095048584394351994062, −7.64401219241868272281651022471, −7.22355409695059130795967375694, −6.77422879319909121148383826708, −6.59584217119164729742109454332, −6.34775997206784202620697152396, −5.94401091686598080131160557360, −5.63380289281512340050766112642, −4.74071634771013428895914220469, −4.70949590653784026576957934979, −4.34917852639489657393858188843, −4.21673055968675756209845574761, −3.61461452219564571347141895945, −2.96877065665955686043938947203, −2.94635997388534091725912282642, −2.27595698912439494364910107973, −2.25525550205861878086315311277, −1.91130348888562443203650959162, −1.47270280921919547369973333303, −0.792469089790200931181645712899, 0, 0, 0, 0, 0.792469089790200931181645712899, 1.47270280921919547369973333303, 1.91130348888562443203650959162, 2.25525550205861878086315311277, 2.27595698912439494364910107973, 2.94635997388534091725912282642, 2.96877065665955686043938947203, 3.61461452219564571347141895945, 4.21673055968675756209845574761, 4.34917852639489657393858188843, 4.70949590653784026576957934979, 4.74071634771013428895914220469, 5.63380289281512340050766112642, 5.94401091686598080131160557360, 6.34775997206784202620697152396, 6.59584217119164729742109454332, 6.77422879319909121148383826708, 7.22355409695059130795967375694, 7.64401219241868272281651022471, 7.921671808095048584394351994062, 8.663142961690271467687070138919, 8.930716553045993118793441606994, 8.956283450880080548424849581725, 9.350870869149623534195643683669, 10.04153719546873848783866044477

Graph of the $Z$-function along the critical line