Properties

Label 8-390e4-1.1-c1e4-0-4
Degree $8$
Conductor $23134410000$
Sign $1$
Analytic cond. $94.0517$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·4-s + 10·9-s + 8·12-s + 3·16-s + 4·17-s − 20·23-s − 2·25-s − 20·27-s + 4·29-s − 20·36-s + 32·43-s − 12·48-s − 16·51-s + 24·53-s − 16·61-s − 4·64-s − 8·68-s + 80·69-s + 8·75-s + 35·81-s − 16·87-s + 40·92-s + 4·100-s − 44·101-s − 16·103-s + 40·108-s + ⋯
L(s)  = 1  − 2.30·3-s − 4-s + 10/3·9-s + 2.30·12-s + 3/4·16-s + 0.970·17-s − 4.17·23-s − 2/5·25-s − 3.84·27-s + 0.742·29-s − 3.33·36-s + 4.87·43-s − 1.73·48-s − 2.24·51-s + 3.29·53-s − 2.04·61-s − 1/2·64-s − 0.970·68-s + 9.63·69-s + 0.923·75-s + 35/9·81-s − 1.71·87-s + 4.17·92-s + 2/5·100-s − 4.37·101-s − 1.57·103-s + 3.84·108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(94.0517\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4552862758\)
\(L(\frac12)\) \(\approx\) \(0.4552862758\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$ \( ( 1 + T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$D_{4}$ \( ( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 48 T^{2} + 1246 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 10 T + 58 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 2 T + 46 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 36 T^{2} + 2230 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 28 T^{2} + 230 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
47$D_4\times C_2$ \( 1 - 76 T^{2} + 5030 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 - 124 T^{2} + 9974 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 + 8 T + 86 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 132 T^{2} + 10006 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 172 T^{2} + 16646 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 216 T^{2} + 21022 T^{4} - 216 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 28 T^{2} - 6826 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 124 T^{2} + 6374 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 312 T^{2} + 41854 T^{4} - 312 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.061410447807527070752279740101, −7.921734429351138403206818904362, −7.911395839490672226612383495233, −7.28408370850552558868117719050, −7.15770020134942168082494972496, −6.96958288781816199857496169008, −6.75684921745809903690553621907, −6.01134239533421212758117675398, −6.00583179444314314035526684452, −5.88514292279929572146331415696, −5.67092512818433186732684878306, −5.66855613071576167916315318375, −5.28244379914479056395443846226, −4.67881252431924868672926182178, −4.44528630915969865537365404958, −4.36571903843325057029973807942, −4.02711500343632160153733806308, −3.96000082420657021028174005107, −3.49828169818915795469979154788, −2.95706065298897152912152530358, −2.30692486753724618079884139079, −2.16506396219071637825830815672, −1.47051304109435739982787953074, −0.913082115461151326886198426371, −0.42435673838783386560341274055, 0.42435673838783386560341274055, 0.913082115461151326886198426371, 1.47051304109435739982787953074, 2.16506396219071637825830815672, 2.30692486753724618079884139079, 2.95706065298897152912152530358, 3.49828169818915795469979154788, 3.96000082420657021028174005107, 4.02711500343632160153733806308, 4.36571903843325057029973807942, 4.44528630915969865537365404958, 4.67881252431924868672926182178, 5.28244379914479056395443846226, 5.66855613071576167916315318375, 5.67092512818433186732684878306, 5.88514292279929572146331415696, 6.00583179444314314035526684452, 6.01134239533421212758117675398, 6.75684921745809903690553621907, 6.96958288781816199857496169008, 7.15770020134942168082494972496, 7.28408370850552558868117719050, 7.911395839490672226612383495233, 7.921734429351138403206818904362, 8.061410447807527070752279740101

Graph of the $Z$-function along the critical line