Properties

Label 8-390e4-1.1-c1e4-0-17
Degree $8$
Conductor $23134410000$
Sign $1$
Analytic cond. $94.0517$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 8·7-s + 6·9-s − 16-s + 12·17-s + 32·21-s − 8·25-s − 4·27-s + 24·29-s + 8·31-s − 16·37-s − 12·43-s − 8·47-s − 4·48-s + 32·49-s + 48·51-s − 8·53-s + 16·59-s + 8·61-s + 48·63-s + 8·67-s − 16·73-s − 32·75-s − 37·81-s + 16·83-s + 96·87-s − 56·89-s + ⋯
L(s)  = 1  + 2.30·3-s + 3.02·7-s + 2·9-s − 1/4·16-s + 2.91·17-s + 6.98·21-s − 8/5·25-s − 0.769·27-s + 4.45·29-s + 1.43·31-s − 2.63·37-s − 1.82·43-s − 1.16·47-s − 0.577·48-s + 32/7·49-s + 6.72·51-s − 1.09·53-s + 2.08·59-s + 1.02·61-s + 6.04·63-s + 0.977·67-s − 1.87·73-s − 3.69·75-s − 4.11·81-s + 1.75·83-s + 10.2·87-s − 5.93·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(94.0517\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.824502088\)
\(L(\frac12)\) \(\approx\) \(8.824502088\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + T^{4} \)
good7$C_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 88 T^{3} + 226 T^{4} - 88 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
19$D_4\times C_2$ \( 1 - 28 T^{2} + 406 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 - 4 T + 64 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 1040 T^{3} + 7666 T^{4} + 1040 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 - 78 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 12 T + 72 T^{2} + 300 T^{3} + 926 T^{4} + 300 p T^{5} + 72 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 152 T^{3} - 62 T^{4} + 152 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 456 T^{3} + 6482 T^{4} + 456 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 8 T + 62 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 4 T + 118 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 472 T^{3} + 6898 T^{4} - 472 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 48 T^{2} + 3458 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
73$C_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 80 T^{3} - 4574 T^{4} + 80 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 140 T^{2} + 12774 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1584 T^{3} + 19346 T^{4} - 1584 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 28 T + 366 T^{2} + 28 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 40 T^{3} - 8414 T^{4} - 40 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.235919263959471435670853845723, −8.087846947698889139437704194872, −7.915688849310987436421230604929, −7.67869379192562561616960266002, −7.63164755779841768659563359090, −6.90911725299467861377485117544, −6.80001680515473308805609937200, −6.65413011823228063736139743228, −6.34672352747216141270714381340, −5.54116812885311822514635339121, −5.49296906175612882103997976984, −5.39056167601152267615243871118, −5.18758167396034018380986262370, −4.70665179338405949109924776657, −4.43692316008887322021167647127, −4.16038397790319089302222284634, −3.98631519311169405813218668025, −3.28145626014685230989178187682, −3.18615064066508699564036289858, −3.10079952322196621416810115887, −2.40607493791406122057582773128, −2.35247979678645319254139132156, −1.68392150978541173130160048334, −1.41808469667407532971803428356, −1.19324448058304920193204930480, 1.19324448058304920193204930480, 1.41808469667407532971803428356, 1.68392150978541173130160048334, 2.35247979678645319254139132156, 2.40607493791406122057582773128, 3.10079952322196621416810115887, 3.18615064066508699564036289858, 3.28145626014685230989178187682, 3.98631519311169405813218668025, 4.16038397790319089302222284634, 4.43692316008887322021167647127, 4.70665179338405949109924776657, 5.18758167396034018380986262370, 5.39056167601152267615243871118, 5.49296906175612882103997976984, 5.54116812885311822514635339121, 6.34672352747216141270714381340, 6.65413011823228063736139743228, 6.80001680515473308805609937200, 6.90911725299467861377485117544, 7.63164755779841768659563359090, 7.67869379192562561616960266002, 7.915688849310987436421230604929, 8.087846947698889139437704194872, 8.235919263959471435670853845723

Graph of the $Z$-function along the critical line