Properties

Label 8-390e4-1.1-c1e4-0-13
Degree $8$
Conductor $23134410000$
Sign $1$
Analytic cond. $94.0517$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 2·4-s + 10·9-s − 8·12-s + 6·13-s + 3·16-s + 8·17-s − 4·23-s − 2·25-s + 20·27-s + 8·29-s − 20·36-s + 24·39-s − 8·43-s + 12·48-s − 8·49-s + 32·51-s − 12·52-s − 4·53-s + 40·61-s − 4·64-s − 16·68-s − 16·69-s − 8·75-s + 32·79-s + 35·81-s + 32·87-s + ⋯
L(s)  = 1  + 2.30·3-s − 4-s + 10/3·9-s − 2.30·12-s + 1.66·13-s + 3/4·16-s + 1.94·17-s − 0.834·23-s − 2/5·25-s + 3.84·27-s + 1.48·29-s − 3.33·36-s + 3.84·39-s − 1.21·43-s + 1.73·48-s − 8/7·49-s + 4.48·51-s − 1.66·52-s − 0.549·53-s + 5.12·61-s − 1/2·64-s − 1.94·68-s − 1.92·69-s − 0.923·75-s + 3.60·79-s + 35/9·81-s + 3.43·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(94.0517\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.692411814\)
\(L(\frac12)\) \(\approx\) \(5.692411814\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$ \( ( 1 - T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good7$D_4\times C_2$ \( 1 + 8 T^{2} + 46 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 8 T^{2} + 190 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
31$D_4\times C_2$ \( 1 - 88 T^{2} + 3790 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 112 T^{2} + 5806 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 80 T^{2} + 3262 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 44 T^{2} + 3814 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 2 T - 46 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 184 T^{2} + 14814 T^{4} - 184 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
67$D_4\times C_2$ \( 1 - 72 T^{2} + 4766 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 140 T^{2} + 13894 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 96 T^{2} + 7454 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
83$D_4\times C_2$ \( 1 - 188 T^{2} + 21526 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 320 T^{2} + 41374 T^{4} - 320 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 192 T^{2} + 22526 T^{4} - 192 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.122968279003970163132267309979, −8.072100298636340252821930282454, −8.022360486362146270906906186783, −7.80969928564689767813418066144, −7.34746814183212372238007293265, −6.91726724913634033252255118654, −6.64359584280747701279743440924, −6.56608982688036452895534213985, −6.49499788494832839476608606612, −5.70088274447625252525906654435, −5.59683933014197947420380552559, −5.36126612194867428113126943173, −5.10594149435196506632106662911, −4.71844180286973510543996675000, −4.17139879793489547440662405322, −4.14944062459346395365861817459, −3.82735430666502852902875426281, −3.47828406412126673822702117232, −3.45992713194320431476358006364, −2.87150561423351129406409523583, −2.83995846023222531482386603290, −2.05518018277053265444179179702, −1.94216972204415676821100824926, −1.12154252455089545342960236453, −1.04359650279217571606764863877, 1.04359650279217571606764863877, 1.12154252455089545342960236453, 1.94216972204415676821100824926, 2.05518018277053265444179179702, 2.83995846023222531482386603290, 2.87150561423351129406409523583, 3.45992713194320431476358006364, 3.47828406412126673822702117232, 3.82735430666502852902875426281, 4.14944062459346395365861817459, 4.17139879793489547440662405322, 4.71844180286973510543996675000, 5.10594149435196506632106662911, 5.36126612194867428113126943173, 5.59683933014197947420380552559, 5.70088274447625252525906654435, 6.49499788494832839476608606612, 6.56608982688036452895534213985, 6.64359584280747701279743440924, 6.91726724913634033252255118654, 7.34746814183212372238007293265, 7.80969928564689767813418066144, 8.022360486362146270906906186783, 8.072100298636340252821930282454, 8.122968279003970163132267309979

Graph of the $Z$-function along the critical line